Dauricine attenuates ovariectomized-induced bone loss and RANKL-induced osteoclastogenesis via inhibiting ROS-mediated NF- κB and NFATc1 activity

被引:5
|
作者
Lin, Xixi [1 ,2 ]
Yuan, Guixin [1 ,2 ,3 ]
Yang, Bin [4 ]
Xie, Chunlan [1 ]
Zhou, Zhigao [3 ]
Liu, Ying [1 ,2 ]
Liu, Zhijuan [5 ,6 ,7 ]
Wu, Zuoxing [1 ,2 ]
Akimoto, Yoshie [8 ]
Li, Na [1 ,2 ]
Xu, Ren [1 ,2 ,6 ,7 ]
Song, Fangming [2 ,5 ,6 ,7 ]
机构
[1] Xiamen Univ, Affiliated Hosp 1, ICMRS Collaborating Ctr Skeletal Stem Cells, Sch Med,State Key Lab Cellular Stress Biol, Xiamen 361100, Fujian, Peoples R China
[2] Xiamen Univ, Sch Med, Xiamen Key Lab Regenerat Med, Fujian Prov Key Lab Organ & Tissue Regenerat, Xiamen 361100, Peoples R China
[3] Shantou Univ Med Coll, Affiliated Hosp 2, Dept Orthoped, Shantou 515044, Guangdong, Peoples R China
[4] Xiamen Univ, Dept Anesthesiol, Affiliated Hosp 1, Xiamen 361000, Fujian, Peoples R China
[5] Guangxi Med Univ, Life Sci Inst, Nanning 530021, Guangxi, Peoples R China
[6] Guangxi Med Univ, Collaborat Innovat Ctr Regenerat Med, Nanning 530021, Guangxi, Peoples R China
[7] Guangxi Med Univ, Med Bio Resource Dev & Applicat Coconstructed Prov, Nanning 530021, Guangxi, Peoples R China
[8] Iskra Ind Co Ltd, Tokyo 1030027, Japan
基金
中国国家自然科学基金;
关键词
Osteoporosis; Osteoclast; Dauricine; ROS; DIFFERENTIATION; OSTEOPOROSIS; DEFICIENCY; HIF-1; HO-1;
D O I
10.1016/j.phymed.2024.155559
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Osteoclast plays an important role in maintaining the balance between bone anabolism and bone catabolism. The abnormality of osteoclast is closely related to osteolytic bone diseases such as osteoporosis, rheumatoid arthritis and tumor bone metastasis. Purpose: We aim to search for natural compound that may suppress osteoclast formation and function. Study design: In this study, we assessed the impact of Dauricine (Dau) on the formation and function of osteoclasts in vitro , as well as its potential in preventing bone loss in an ovariectomy mouse model in vivo . Methods: Multiple in vitro experiments were carried out, including osteoclastogenesis, podosomal belt formation, bone resorption assay, RNA-sequencing, real -time quantitative PCR, ROS level detection, surface plasmon resonance assay, luciferase assay and western blot. To verify the effect in vivo , an ovariectomized mouse model (OVX model) was constructed, and bone parameters were measured using micro -CT and histology. Furthermore, metabolomics analysis was performed on blood serum samples from the OVX model. Results: In vitro experiments demonstrated that Dau inhibits RANKL-induced osteoclastogenesis, podosomal belt formation, and bone resorption function. RNA-sequencing results revealed that Dau significantly suppresses genes related to osteoclast. Functional enrichment analysis indicated that Dau ' s inhibition of osteoclasts may be associated with NF- kappa B signaling pathway and reactive oxygen metabolism pathway. Molecular docking, surface plasmon resonance assay and western blot analysis further confirm ed that Dau inhibits RANKL-induced osteoclastogenesis by modulating the ROS/NF- kappa B/NFATc1 pathway. Moreover, administration of Dau to OVX-induced mice validated its efficacy in treating bone loss disease. Conclusion: Dau prevents OVX-induced bone loss by inhibiting osteoclast activity and bone resorption, potentially offering a new approach for preventing and treating metabolic bone diseases such as osteoporosis. This study provides innovative insights into the inhibitory effects of Dau in an in vivo OVX model and elucidates the underlying mechanism.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Fructose 1,6-bisphosphate inhibits osteoclastogenesis by attenuating RANKL-induced NF-κB/NFATc-1
    L. Wilches-Buitrago
    P. R. Viacava
    F. Q. Cunha
    J. C. Alves-Filho
    S. Y. Fukada
    Inflammation Research, 2019, 68 : 415 - 421
  • [42] Fructose 1,6-bisphosphate inhibits osteoclastogenesis by attenuating RANKL-induced NF-κB/NFATc-1
    Wilches-Buitrago, L.
    Viacava, P. R.
    Cunha, F. Q.
    Alves-Filho, J. C.
    Fukada, S. Y.
    INFLAMMATION RESEARCH, 2019, 68 (05) : 415 - 421
  • [43] Aspirin inhibits RANKL-induced osteoclast differentiation in dendritic cells by suppressing NF-κB and NFATc1 activation
    Wu, Lili
    Luo, Zhenhua
    Liu, Yitong
    Jia, Lu
    Jiang, Yiyang
    Du, Juan
    Guo, Lijia
    Bai, Yuxing
    Liu, Yi
    STEM CELL RESEARCH & THERAPY, 2019, 10 (01)
  • [44] Naringin abrogates osteoclastogenesis and bone resorption via the inhibition of RANKL-induced NF-κB and ERK activation
    Ang, Estabelle S. M.
    Yang, Xiaohong
    Chen, Honghui
    Liu, Qian
    Zheng, Ming H.
    Xu, Jiake
    FEBS LETTERS, 2011, 585 (17) : 2755 - 2762
  • [45] Cytochalasin Z11 inhibits RANKL-induced osteoclastogenesis via suppressing NFATc1 activation
    Wang, Lu
    Chen, Kai
    He, Jianbo
    Kenny, Jacob
    Yuan, Yu
    Chen, Junhao
    Liu, Qian
    Tan, Renxiang
    Zhao, Jinmin
    Xu, Jiake
    RSC ADVANCES, 2019, 9 (66) : 38438 - 38446
  • [46] Aspirin inhibits RANKL-induced osteoclast differentiation in dendritic cells by suppressing NF-κB and NFATc1 activation
    Lili Wu
    Zhenhua Luo
    Yitong Liu
    Lu Jia
    Yiyang Jiang
    Juan Du
    Lijia Guo
    Yuxing Bai
    Yi Liu
    Stem Cell Research & Therapy, 10
  • [47] Bu-Shen-Ning-Xin decoction: inhibition of osteoclastogenesis by abrogation of the RANKL-induced NFATc1 and NF-κB signaling pathways via selective estrogen receptor α
    Wang, Ling
    Qiu, Xue-Min
    Gui, Yu-Yan
    Xu, Ying-Ping
    Gober, Hans-Juergen
    Li, Da-Jin
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2015, 9 : 3755 - 3766
  • [48] Maackiain dampens osteoclastogenesis via attenuating RANKL-stimulated NF-κB signalling pathway and NFATc1 activity
    Liu, Yuhao
    Zeng, Weizai
    Ma, Chao
    Wang, Ziyi
    Wang, Chao
    Li, Shaobin
    He, Wei
    Zhang, Qingwen
    Xu, Jiake
    Zhou, Chi
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2020, 24 (21) : 12308 - 12317
  • [49] Protaetia brevitarsis Extract Attenuates RANKL-Induced Osteoclastogenesis by Inhibiting the JNK/NF-?B/PLC?2 Signaling Pathway
    Jang, Hye-Yeon
    Kim, Jeong-Mi
    Kim, Jong-Suk
    Kim, Byeong-Soo
    Lee, Young-Rae
    Bae, Jun Sang
    NUTRIENTS, 2023, 15 (14)
  • [50] 12-Deoxyphorbol-13-Hexadecanoate Abrogates OVX-Induced Bone Loss in Mice and Osteoclastogenesis via Inhibiting ROS Level and Regulating RANKL-Mediated NFATc1 Activation
    He, Qi
    Yang, Junzheng
    Chen, Delong
    Li, Yejia
    Gong, Dawei
    Ge, Hui
    Wang, Zihao
    Wang, Haibin
    Chen, Peng
    FRONTIERS IN PHARMACOLOGY, 2022, 13