Fructose 1,6-bisphosphate inhibits osteoclastogenesis by attenuating RANKL-induced NF-κB/NFATc-1

被引:14
|
作者
Wilches-Buitrago, L. [1 ,2 ]
Viacava, P. R. [1 ]
Cunha, F. Q. [1 ]
Alves-Filho, J. C. [1 ]
Fukada, S. Y. [2 ]
机构
[1] Univ Sao Paulo, Ribeirao Preto Med Sch, Dept Pharmacol, Ribeirao Preto, Brazil
[2] Univ Sao Paulo, Sch Pharmaceut Sci Ribeirao Preto, Dept Phys & Chem, Ribeirao Preto, Brazil
基金
巴西圣保罗研究基金会;
关键词
Bone remodeling; Osteoclasts; NFATc1; Fructose 1,6-bisphosphate; NF-KAPPA-B; DIFFERENTIATION; NETWORKS;
D O I
10.1007/s00011-019-01228-w
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Background Although some glycolytic intermediates have been shown to modulate several cell type formation and activation, the functional role of fructose 1,6-bisphosphate (FBP) on osteoclastogenesis is still unknown. Methods Osteoclastogenesis was evaluated on bone marrow preosteoclasts cultured with M-CSF -30 ng/ml, RANKL -10 ng/ml, and two concentrations of FBP (100 and 300 mu M). TRAP-positive stained cells were counted, and osteoclastogenic marker genes expression were evaluated by qPCR. Osteoclasts resorption capacity was evaluated by the expression of specific enzymes and capacity to resorb a mineralized matrix. The NF-kappa B activation was detected using RAW 264.7, stably expressing luciferase on the NF-B responsive promoter. Results We show that FBP, the product of the first stage of glycolysis, inhibited RANKL-induced osteoclasts differentiation and TRAP activity. The treatment of preosteoclasts with FBP attenuated osteoclast fusion and formation, without affecting cell viability. Moreover, the inhibition of several osteoclastogenic marker genes expression (TRAP, OSCAR, DC-STAMP, Integrin v, NFATc1) by FBP correlates with a reduction of mineralized matrix resorption capacity. The mechanism underlying FBP-inhibition of osteoclastogenesis involves NF-kappa B/NFATc1 signaling pathway inhibition. Conclusion Altogether these data show a protective role of a natural glycolytic intermediate in bone homeostasis that may have therapeutic benefit for osteolytic diseases.
引用
收藏
页码:415 / 421
页数:7
相关论文
共 50 条
  • [1] Fructose 1,6-bisphosphate inhibits osteoclastogenesis by attenuating RANKL-induced NF-κB/NFATc-1
    L. Wilches-Buitrago
    P. R. Viacava
    F. Q. Cunha
    J. C. Alves-Filho
    S. Y. Fukada
    Inflammation Research, 2019, 68 : 415 - 421
  • [2] Interleukin 29 inhibits RANKL-induced osteoclastogenesis via activation of JNK and STAT, and inhibition of NF-κB and NFATc1
    Peng, Qiuyue
    Luo, Aishu
    Zhou, Zihao
    Xuan, Wenhua
    Qiu, Ming
    Wu, Qin
    Xu, Lingxiao
    Kong, Xiangqing
    Zhang, Miaojia
    Tan, Wenfeng
    Xue, Meilang
    Wang, Fang
    CYTOKINE, 2019, 113 : 144 - 154
  • [3] Pim-1 Regulates RANKL-Induced Osteoclastogenesis via NF-κB Activation and NFATc1 Induction
    Kim, Kabsun
    Kim, Jung Ha
    Youn, Bang Ung
    Jin, Hye Mi
    Kim, Nacksung
    JOURNAL OF IMMUNOLOGY, 2010, 185 (12): : 7460 - 7466
  • [4] Peiminine Suppresses RANKL-Induced Osteoclastogenesis by Inhibiting the NFATc1, ERK, and NF-κB Signaling Pathways
    Zhu, Mengbo
    Xu, Wenbin
    Jiang, Jiuzhou
    Wang, Yining
    Guo, Yanjing
    Yang, Ruijia
    Chang, Yaqiong
    Zhao, Bin
    Wang, Zhenyu
    Zhang, Jianfeng
    Wang, Te
    Shangguan, Liqin
    Wang, Shaowei
    FRONTIERS IN ENDOCRINOLOGY, 2021, 12
  • [5] Hispidulin attenuates bone resorption and osteoclastogenesis via the RANKL-induced NF-κB and NFATc1 pathways
    Nepal, Manoj
    Choi, Hwa Jung
    Choi, Bo-Yun
    Yang, Moon-Shik
    Chae, Jung-Il
    Li, Liang
    Soh, Yunjo
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2013, 715 (1-3) : 96 - 104
  • [6] Inhibition of RANKL-induced osteoclastogenesis by (-)-DHMEQ, a novel NF-κB inhibitor, through downregulation of NFATc1
    Takatsuna, H
    Asagiri, M
    Kubota, T
    Oka, K
    Osada, T
    Sugiyama, C
    Saito, H
    Aoki, K
    Ohya, K
    Takayanagi, H
    Umezawa, K
    JOURNAL OF BONE AND MINERAL RESEARCH, 2005, 20 (04) : 653 - 662
  • [7] Benzo[a]pyrene inhibits osteoclastogenesis by affecting RANKL-induced activation of NF-κB
    Voronov, I.
    Li, K.
    Tenenbaum, H. C.
    Manolson, M. F.
    BIOCHEMICAL PHARMACOLOGY, 2008, 75 (10) : 2034 - 2044
  • [8] Saikosaponin a inhibits RANKL-induced osteoclastogenesis by suppressing NF-κB and MAPK pathways
    Zhou, Chi
    Liu, Wengang
    He, Wei
    Wang, Haibin
    Chen, Qunqun
    Song, Houpan
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2015, 25 (01) : 49 - 54
  • [9] Asiaticoside, a component of Centella asiatica attenuates RANKL-induced osteoclastogenesis via NFATc1 and NF-κB signaling pathways
    He, Lilei
    Hong, Guoju
    Zhou, Lin
    Zhang, Jianguo
    Fang, Jian
    He, Wei
    Tickner, Jennifer
    Han, Xiaorui
    Zhao, Lilian
    Xu, Jiake
    JOURNAL OF CELLULAR PHYSIOLOGY, 2019, 234 (04) : 4267 - 4276
  • [10] Gentiopicroside inhibits RANKL-induced osteoclastogenesis by regulating NF-κB and JNK signaling pathways
    Chen, Fangqing
    Xie, Lin
    Kang, Ran
    Deng, Rongrong
    Xi, Zhipeng
    Sun, Daoxi
    Zhu, Jin
    Wang, Liming
    BIOMEDICINE & PHARMACOTHERAPY, 2018, 100 : 142 - 146