Efficient Deep Learning Approach for the Classification of Pneumonia in Infants from Chest X-Ray Images

被引:0
|
作者
AlGhamdi, Ahmed Saeed [1 ]
机构
[1] Taif Univ, Coll Comp & Informat Technol, Dept Comp Engn, POB 11099, Taif 21994, Saudi Arabia
关键词
pediatric pneumonia; X-ray; deep learning; MobileNeT-V3; radiology; childcare; medical imaging; image classification;
D O I
10.18280/ts.410314
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pediatric pneumonia is a major infectious disease which caused more than 5,00,000 deaths of infants and young children below the age of 5 years. This number is equivalent to the death of one child per minute. These statistics are daunting and more focused studies and development of tools are required to tackle this challenge. It has also been seen that pediatric pneumonia is curable through antibiotics and oxygen therapy if it is diagnosed at early stages. Current radiology techniques used are not able to diagnose pneumonia at early stages because specific arrangements are to be made for childcare. They cannot be treated as normal adults. Special care is to be taken for childcare as improper handling of radiology techniques may harm the child or generate inaccurate diagnosis. Recent advancements in computer aided diagnosis with the help of deep learning techniques has improved the quality of medical imaging techniques such as CT -Scan, X-ray images, etc. However, limited attention is given to the application of deep learning techniques for diagnosis and classification of pediatric pneumonia. Moreover, conducting manual tests, image classification and analysis of radiological images are prone to human errors due to lack of expertise of the radiologists. Inaccurate analysis of radiological images like X-rays can suggest inappropriate treatment for children which can prove to be fatal. To fasten the interpretation of radiological images, this paper suggests a deep learning model, focusing specifically on classifying pediatric pneumonia from chest X-ray images. In this paper, a MobileNeT-V3 architecture is implemented and tested against various datasets containing more than 10,000 chest X-ray images. Analysis of suggested implementation shows that this is better than various classical tools and techniques used for classification of chest X-ray. The suggested technique achieved a classification accuracy of 95.8% over dataset-1 and 97.8% over dataset-2, shows the efficiency of the technique. The model in this study not only demonstrated high classification accuracy but also excelled in other key metrics, achieving a precision of 97% and 94%, recall of 97% and 98%, and F1 scores of 97% for both datasets, underscoring its precision and reliability in diagnosing pediatric pneumonia.
引用
收藏
页码:1245 / 1262
页数:18
相关论文
共 50 条
  • [1] DEEP LEARNING CLASSIFICATION OF CHEST X-RAY IMAGES
    Majdi, Mohammad S.
    Salman, Khalil N.
    Morris, Michael F.
    Merchant, Nirav C.
    Rodriguez, Jeffrey J.
    2020 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION (SSIAI 2020), 2020, : 116 - 119
  • [2] Diagnosis of Pneumonia from Chest X-Ray Images using Deep Learning
    Ayan, Enes
    Unver, Halil Murat
    2019 SCIENTIFIC MEETING ON ELECTRICAL-ELECTRONICS & BIOMEDICAL ENGINEERING AND COMPUTER SCIENCE (EBBT), 2019,
  • [3] Classification of Lung Chest X-Ray Images Using Deep Learning with Efficient Optimizers
    Asaithambi, A.
    Thamilarasi, V.
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 465 - 469
  • [4] Classification of Thoracic Abnormalities from Chest X-Ray Images with Deep Learning
    Nawaz, Usman
    Ashraf, Muhammad Ummar
    Iqbal, Muhammad Junaid
    Asaf, Muhammad
    Mir, Mariam Munsif
    Raza, Usman Ahmed
    Sharif, Bilal
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (04) : 9 - 14
  • [5] Pneumonia Classification Using Deep Learning from Chest X-ray Images During COVID-19
    Ibrahim, Abdullahi Umar
    Ozsoz, Mehmet
    Serte, Sertan
    Al-Turjman, Fadi
    Yakoi, Polycarp Shizawaliyi
    COGNITIVE COMPUTATION, 2024, 16 (04) : 1589 - 1601
  • [6] A Deep Transfer Learning Framework for Pneumonia Detection from Chest X-ray Images
    Islam, Kh Tohidul
    Wijewickrema, Sudanthi
    Collins, Aaron
    O'Leary, Stephen
    PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 5: VISAPP, 2020, : 286 - 293
  • [7] Efficient federated learning for pediatric pneumonia on chest X-ray classification
    Pan, Zegang
    Wang, Haijiang
    Wan, Jian
    Zhang, Lei
    Huang, Jie
    Shen, Yangyu
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [8] A comparison of deep learning models for pneumonia detection from chest x-ray images
    Kadiroglu, Zehra
    Deniz, Erkan
    Senyigit, Abdurrahman
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2024, 39 (02): : 729 - 740
  • [9] Deep Transfer Learning for the Multilabel Classification of Chest X-ray Images
    Huang, Guan-Hua
    Fu, Qi-Jia
    Gu, Ming-Zhang
    Lu, Nan-Han
    Liu, Kuo-Ying
    Chen, Tai-Been
    DIAGNOSTICS, 2022, 12 (06)
  • [10] Deep Learning for Pneumonia Detection in Chest X-ray Images: A Comprehensive Survey
    Siddiqi, Raheel
    Javaid, Sameena
    JOURNAL OF IMAGING, 2024, 10 (08)