Pneumonia Classification Using Deep Learning from Chest X-ray Images During COVID-19

被引:143
|
作者
Ibrahim, Abdullahi Umar [1 ]
Ozsoz, Mehmet [1 ]
Serte, Sertan [2 ]
Al-Turjman, Fadi [3 ]
Yakoi, Polycarp Shizawaliyi [4 ]
机构
[1] Near East Univ, Dept Biomed Engn, Mersin 10, Nicosia, Turkey
[2] Near East Univ, Dept Elect Engn, Mersin 10, Nicosia, Turkey
[3] Near East Univ, Res Ctr & IoT, Dept Artificial Intelligence, Mersin 10, Nicosia, Turkey
[4] Cyprus Int Univ, Dept Comp Engn, Mersin 10, Nicosia, Turkey
关键词
COVID-19; Non-COVID-19 viral pneumonia; Bacterial pneumonia; AlexNet; Chest X-rays images (CXR); BACTERIAL PNEUMONIA; ARCHITECTURE; DIAGNOSIS;
D O I
10.1007/s12559-020-09787-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The outbreak of the novel corona virus disease (COVID-19) in December 2019 has led to global crisis around the world. The disease was declared pandemic by World Health Organization (WHO) on 11th of March 2020. Currently, the outbreak has affected more than 200 countries with more than 37 million confirmed cases and more than 1 million death tolls as of 10 October 2020. Reverse-transcription polymerase chain reaction (RT-PCR) is the standard method for detection of COVID-19 disease, but it has many challenges such as false positives, low sensitivity, expensive, and requires experts to conduct the test. As the number of cases continue to grow, there is a high need for developing a rapid screening method that is accurate, fast, and cheap. Chest X-ray (CXR) scan images can be considered as an alternative or a confirmatory approach as they are fast to obtain and easily accessible. Though the literature reports a number of approaches to classify CXR images and detect the COVID-19 infections, the majority of these approaches can only recognize two classes (e.g., COVID-19 vs. normal). However, there is a need for well-developed models that can classify a wider range of CXR images belonging to the COVID-19 class itself such as the bacterial pneumonia, the non-COVID-19 viral pneumonia, and the normal CXR scans. The current work proposes the use of a deep learning approach based on pretrained AlexNet model for the classification of COVID-19, non-COVID-19 viral pneumonia, bacterial pneumonia, and normal CXR scans obtained from different public databases. The model was trained to perform two-way classification (i.e., COVID-19 vs. normal, bacterial pneumonia vs. normal, non-COVID-19 viral pneumonia vs. normal, and COVID-19 vs. bacterial pneumonia), three-way classification (i.e., COVID-19 vs. bacterial pneumonia vs. normal), and four-way classification (i.e., COVID-19 vs. bacterial pneumonia vs. non-COVID-19 viral pneumonia vs. normal). For non-COVID-19 viral pneumonia and normal (healthy) CXR images, the proposed model achieved 94.43% accuracy, 98.19% sensitivity, and 95.78% specificity. For bacterial pneumonia and normal CXR images, the model achieved 91.43% accuracy, 91.94% sensitivity, and 100% specificity. For COVID-19 pneumonia and normal CXR images, the model achieved 99.16% accuracy, 97.44% sensitivity, and 100% specificity. For classification CXR images of COVID-19 pneumonia and non-COVID-19 viral pneumonia, the model achieved 99.62% accuracy, 90.63% sensitivity, and 99.89% specificity. For the three-way classification, the model achieved 94.00% accuracy, 91.30% sensitivity, and 84.78%. Finally, for the four-way classification, the model achieved an accuracy of 93.42%, sensitivity of 89.18%, and specificity of 98.92%.
引用
收藏
页码:1589 / 1601
页数:13
相关论文
共 50 条
  • [1] Y Covid-19 Classification Using Deep Learning in Chest X-Ray Images
    Karhan, Zehra
    Akal, Fuat
    [J]. 2020 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2020,
  • [2] Deep Learning Algorithm for COVID-19 Classification Using Chest X-Ray Images
    Sharmila, V. J.
    Florinabel, Jemi D.
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021
  • [3] Fast COVID-19 and Pneumonia Classification Using Chest X-ray Images
    Lujan-Garcia, Juan Eduardo
    Moreno-Ibarra, Marco Antonio
    Villuendas-Rey, Yenny
    Yanez-Marquez, Cornelio
    [J]. MATHEMATICS, 2020, 8 (09)
  • [4] Classification of Chest X-ray Images to Diagnose Covid-19 using Deep Learning Techniques
    Santos Silva, Isabel Heloise
    Barros Negreiros, Ramoni Reus
    Firmino Alves, Andre Luiz
    Gomes Valadares, Dalton Cezane
    Perkusich, Angelo
    [J]. WINSYS : PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON WIRELESS NETWORKS AND MOBILE SYSTEMS, 2022, : 93 - 100
  • [5] Optimal Synergic Deep Learning for COVID-19 Classification Using Chest X-Ray Images
    Escorcia-Gutierrez, Jose
    Gamarra, Margarita
    Soto-Diaz, Roosvel
    Alsafari, Safa
    Yafoz, Ayman
    Mansour, Romany F.
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (03): : 5255 - 5270
  • [6] Identification of COVID-19 with Chest X-ray Images using Deep Learning
    Khandar, Punam
    Thaokar, Chetana
    [J]. INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2021, 12 (05): : 694 - 700
  • [7] CoroDet: A deep learning based classification for COVID-19 detection using chest X-ray images
    Hussain, Emtiaz
    Hasan, Mahmudul
    Rahman, Md Anisur
    Lee, Ickjai
    Tamanna, Tasmi
    Parvez, Mohammad Zavid
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 142
  • [8] Deep Learning for Reliable Classification of COVID-19, MERS, and SARS from Chest X-ray Images
    Tahir, Anas M.
    Qiblawey, Yazan
    Khandakar, Amith
    Rahman, Tawsifur
    Khurshid, Uzair
    Musharavati, Farayi
    Islam, M. T.
    Kiranyaz, Serkan
    Al-Maadeed, Somaya
    Chowdhury, Muhammad E. H.
    [J]. COGNITIVE COMPUTATION, 2022, 14 (05) : 1752 - 1772
  • [9] Deep Learning for Reliable Classification of COVID-19, MERS, and SARS from Chest X-ray Images
    Anas M. Tahir
    Yazan Qiblawey
    Amith Khandakar
    Tawsifur Rahman
    Uzair Khurshid
    Farayi Musharavati
    M. T. Islam
    Serkan Kiranyaz
    Somaya Al-Maadeed
    Muhammad E. H. Chowdhury
    [J]. Cognitive Computation, 2022, 14 : 1752 - 1772
  • [10] COVID-19 Pneumonia Diagnosis Using Chest X-ray Radiography and Deep Learning
    Griner, Dalton
    Zhang, Ran
    Tie, Xin
    Zhang, Chengzhu
    Garrett, John
    Li, Ke
    Chen, Guang-Hong
    [J]. MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS, 2021, 11597