ON WASSERSTEIN DISTANCES FOR AFFINE TRANSFORMATIONS OF RANDOM VECTORS

被引:0
|
作者
Hamm, Keaton [1 ,2 ]
Korzeniowski, Andrzej [1 ]
机构
[1] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
[2] Univ Texas Arlington, Coll Sci, Div Data Sci, Arlington, TX 76019 USA
来源
FOUNDATIONS OF DATA SCIENCE | 2024年 / 6卷 / 04期
关键词
Wasserstein distance; optimal transport; Random vectors; Approxi- mation theory; Dimensionality reduction; Handwritten digit recognition; MAPS;
D O I
10.3934/fods.2024023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We expound on some known lower bounds of the quadratic Wasserstein distance between random vectors in R (n )with an emphasis on affine transformations that have been used in manifold learning of data in Wasserstein space. In particular, we give concrete lower bounds for rotated copies of random vectors in R- 2 by computing the Bures metric between the covariance matrices. We also derive upper bounds for compositions of affine maps which yield a fruitful variety of diffeomorphisms applied to an initial data measure. We apply these bounds to various distributions including those lying on a 1dimensional manifold in R( 2 )and illustrate the quality of the bounds. Finally, we give a framework for mimicking handwritten digit or alphabet datasets that can be applied in a manifold learning framework.
引用
收藏
页码:468 / 491
页数:24
相关论文
共 50 条
  • [21] Orthogonal Estimation of Wasserstein Distances
    Rowland, Mark
    Hron, Jiri
    Tang, Yunhao
    Choromanski, Krzysztof
    Sarlos, Tamas
    Weller, Adrian
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89 : 186 - 195
  • [22] Wasserstein Stability of the Entropy Power Inequality for Log-Concave Random Vectors
    Courtade, Thomas A.
    Fathi, Max
    Pananjady, Ashwin
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 659 - 663
  • [23] Tropical optimal transport and Wasserstein distances
    Lee W.
    Li W.
    Lin B.
    Monod A.
    Information Geometry, 2022, 5 (1) : 247 - 287
  • [24] Algorithm for recognizing objects based on clustering vectors in the space of coefficients of affine transformations
    Pantyukhin, M. A.
    Samoylin, E. A.
    JOURNAL OF OPTICAL TECHNOLOGY, 2017, 84 (05) : 308 - 315
  • [25] Wasserstein Distances for Stereo Disparity Estimation
    Garg, Divyansh
    Wang, Yan
    Hariharan, Bharath
    Campbell, Mark
    Weinberger, Kilian Q.
    Chao, Wei-Lun
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [26] Minimax statistical learning with Wasserstein distances
    Lee, Jaeho
    Raginsky, Maxim
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [27] On adaptive confidence sets for the Wasserstein distances
    Deo, Neil
    Randrianarisoa, Thibault
    BERNOULLI, 2023, 29 (03) : 2119 - 2141
  • [28] AFFINE NORMABILITY OF PARTIAL-SUMS OF IID RANDOM VECTORS - A CHARACTERIZATION
    HAHN, MG
    KLASS, MJ
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 69 (04): : 479 - 505
  • [29] On efficient multilevel clustering via wasserstein distances
    Huynh, Viet
    Ho, Nhat
    Dam, Nhan
    Nguyen, XuanLong
    Yurochkin, Mikhail
    Bui, Hung
    Phung, Dinh
    Journal of Machine Learning Research, 2021, 22
  • [30] Inference for empirical Wasserstein distances on finite spaces
    Sommerfeld, Max
    Munk, Axel
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2018, 80 (01) : 219 - 238