Separablilty of metric measure spaces and choice axioms

被引:0
|
作者
Howard, Paul [1 ]
机构
[1] Eastern Michigan Univ, Dept Math & Stat, Ypsilanti, MI 48197 USA
关键词
Axiom of choice; Weak axioms of choice; Well-ordered set; Fraenkel-Mostowski (FM) permutation model of; Borel measure;
D O I
10.1007/s00153-024-00931-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In set theory without the Axiom of Choice we prove that the assertion "For every metric space (X, d) with a Borel measure mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} such that the measure of every open ball is positive and finite, (X, d) is separable.' is implied by the axiom of choice for countable collections of sets and implies the axiom of choice for countable collections of finite sets. We also show that neither implication is reversible in Zermelo-Fraenkel set theory weakend to permit the existence of atoms and that the second implication is not reversible in Zermelo-Fraenkel set theory. This gives an answer to a question of Dybowski and G & oacute;rka (Arch Math Logic 62:735-749, 2023. https://doi.org/10.1007/s00153-023-00868-4).
引用
收藏
页码:987 / 1003
页数:17
相关论文
共 50 条
  • [1] Weak axioms of choice for metric spaces
    Keremedis, K
    Tachtsis, E
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (12) : 3691 - 3701
  • [2] Convergence axioms on generalized metric spaces
    Kumari P.S.
    Sarma I.R.
    Rao J.M.
    Afrika Matematika, 2017, 28 (1-2) : 35 - 43
  • [3] The axiom of choice in metric measure spaces and maximal d -separated sets
    Dybowski, Michal
    Gorka, Przemyslaw
    ARCHIVE FOR MATHEMATICAL LOGIC, 2023, 62 (5-6) : 735 - 749
  • [4] Metric spaces and the axiom of choice
    De la Cruz, O
    Hall, E
    Howard, P
    Keremedis, K
    Rubin, JE
    MATHEMATICAL LOGIC QUARTERLY, 2003, 49 (05) : 455 - 466
  • [5] MARKED METRIC MEASURE SPACES
    Depperschmidt, Andrej
    Greven, Andreas
    Pfaffelhuber, Peter
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 174 - 188
  • [6] On the measure contraction property of metric measure spaces
    Ohta, Shin-ichi
    COMMENTARII MATHEMATICI HELVETICI, 2007, 82 (04) : 805 - 828
  • [7] Weighted Sobolev spaces on metric measure spaces
    Ambrosio, Luigi
    Pinamonti, Andrea
    Speight, Gareth
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 746 : 39 - 65
  • [8] Grand Sobolev Spaces on Metric Measure Spaces
    S. V. Pavlov
    Siberian Mathematical Journal, 2022, 63 : 956 - 966
  • [9] Interpolation of Morrey Spaces on Metric Measure Spaces
    Lu, Yufeng
    Yang, Dachun
    Yuan, Wen
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (03): : 598 - 608
  • [10] BMO SPACES FOR NONDOUBLING METRIC MEASURE SPACES
    Kosz, Dariusz
    PUBLICACIONS MATEMATIQUES, 2020, 64 (01) : 103 - 119