Andrews-Beck type congruences modulo arbitrary powers of 5 for 2-colored partitions

被引:0
|
作者
Lin, Yang [1 ]
Yao, Olivia X. M. [1 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Math Sci, Suzhou 215009, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Partitions; rank; crank; Andrews-Beck type congruences; CRANK;
D O I
10.1142/S1793042124501069
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Andrews proved two conjectures on a partition statistic introduced by Beck. Chern established some results on weighted rank and crank moments and proved many Andrews-Beck type congruences. Motivated by Andrews and Chern's work, Lin, Peng and Toh introduced a partition statistic of k-colored partitions NBk(r,m,n) which counts the total number of parts of the first component in each k-colored partition pi of n with crank(k)(pi) congruent to r modulo m and proved many congruences for NBk(r,m,n). Very recently, Du and Tang proved a number of Andrews-Beck type congruences for NBk(r,m,n) and confirmed all conjectures posed by Lin, Peng and Toh. Motivated by their work, we establish the generating functions of NB2(r, 5,n) -NB2(5 - r, 5,n) and prove several families of congruences modulo arbitrary powers of 5 for NB2(r, 5,n). In particular, we generalize a congruence modulo 5 for NB2(r, 5,n) due to Lin, Peng and Toh.
引用
收藏
页码:2169 / 2185
页数:17
相关论文
共 44 条
  • [31] Some missed congruences modulo powers of 2 for t-colored overpartitions
    Saikia, Manjil P. P.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2023, 29 (01):
  • [32] New congruences modulo powers of 2 for broken 3-diamond partitions and 7-core partitions
    Xia, Ernest X. W.
    JOURNAL OF NUMBER THEORY, 2014, 141 : 119 - 135
  • [33] CONGRUENCES MODULO POWERS OF 2 AND 3 FOR A RESTRICTED BINARY PARTITION FUNCTION A LA ANDREWS AND LEWIS
    Yao, Olivia X. M.
    Gu, Chao
    Ma, Yinghua
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2017, 12 (01) : 20 - 27
  • [34] New congruences modulo 5 for the number of 2-color partitions
    Ahmed, Zakir
    Baruah, Nayandeep Deka
    Dastidar, Manosij Ghosh
    JOURNAL OF NUMBER THEORY, 2015, 157 : 184 - 198
  • [35] An infinite family of internal congruences modulo powers of 2 for partitions into odd parts with designated summands
    Chern, Shane
    Sellers, James A.
    ACTA ARITHMETICA, 2024, 215 (01) : 43 - 64
  • [36] Ramanujan-type congruences for broken 2-diamond partitions modulo 3
    Chen, William Y. C.
    Fan, Anna R. B.
    Yu, Rebecca T.
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (08) : 1553 - 1560
  • [37] Ramanujan-type congruences for broken 2-diamond partitions modulo 3
    CHEN William Y.C.
    FAN Anna R.B.
    YU Rebecca T.
    Science China(Mathematics), 2014, 57 (08) : 1553 - 1560
  • [38] Ramanujan-type congruences for broken 2-diamond partitions modulo 3
    William Y. C. Chen
    Anna R. B. Fan
    Rebecca T. Yu
    Science China Mathematics, 2014, 57 : 1553 - 1560
  • [39] More infinite families of congruences modulo 5 for broken 2-diamond partitions
    Xia, Ernest X. W.
    JOURNAL OF NUMBER THEORY, 2017, 170 : 250 - 262
  • [40] Ramanujan-type congruences for l-regular partitions modulo 3, 5, 11 and 13
    Jin, Hai-Tao
    Zhang, Li
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (08) : 1995 - 2006