Geodesic deviation analysis of time conformal Schwarzschild like black hole

被引:0
|
作者
Ghafar, Muhammad Saad [1 ,2 ]
Ali, Farhad [1 ]
Shah, Zahir [3 ]
Iqbal, Shahid [4 ]
Alshehri, Mansoor H. [5 ]
机构
[1] Kohat Univ Sci & Technol, Inst Numer Sci, Kohat 26000, Pakistan
[2] Natl Univ Modern Languages, Dept Math, Islamabad 44000, Pakistan
[3] Univ Lakki Marwat, Dept Math Sci, Khyber Pakhtunkhwa, Lakki Marwat 28420, Pakistan
[4] Univ Wisconsin La Crosse, Dept Phys, 1725 State St, La Crosse, WI 54601 USA
[5] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
关键词
Perturbation; Black hole; Approximation; Dynamics; DYNAMICS; PARTICLES; CLASSIFICATION; SPACETIMES;
D O I
10.1007/s12648-024-03341-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The astrophysical phenomena, for instance, the growth or decay of black holes (BHs), gravitational waves may continuously change the curvature of spacetimes. In addition, such phenomena also affect the thermodynamic structure of the sources over time. In this research, we examined the insertion of the time conformal factor e & varepsilon;f(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e<^>{\epsilon f(t)}$$\end{document} in the Renormalization Group Improved (RGI) Schwarzschild BH, without violating symmetry structure. We demonstrated that the curvature invariants, which are responsible for the spacetime structure around the time conformal Renormalization Group Improved Schwarzschild (TCRGIS) BH, depend explicitly on this time conformal factor. The parameter gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document} that appeared in these invariants gives a complete radial profile of the square of the Ricci tensor, the Ricci scalar and the Kretschmann scalar. For positive values of gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document} the behavior of the curvature of TCRGIS-BH is similar to both the RGI-BH and the Schwarzschild BH as it becomes infinite at center for gamma=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma =0$$\end{document}. Moreover, we have analyzed that the curvature invariants for TCRGIS BH decrease more rapidly as compared to both the RGI Schwarzschild BH and regular Schwarzschild BH, as a function of time.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [31] Further evidence for the conformal structure of a Schwarzschild black hole in an algebraic approach
    Gupta, KS
    Sen, S
    PHYSICS LETTERS B, 2002, 526 (1-2) : 121 - 126
  • [32] Complete set of solutions of the geodesic equation in the space-time of a Schwarzschild black hole pierced by a cosmic string
    Hackmann, Eva
    Hartmann, Betti
    Laemmerzahl, Claus
    Sirimachan, Parinya
    PHYSICAL REVIEW D, 2010, 81 (06)
  • [33] NULL GEODESIC DEVIATION .2. SCHWARZSCHILD METRIC
    PETERS, PC
    JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (04) : 546 - 553
  • [34] Thermodynamical analysis of acoustic Schwarzschild black hole
    Yasir, Muhammad
    Tiecheng, Xia
    Ditta, Allah
    Ali, Riasat
    Atamurotov, Farruh
    NEW ASTRONOMY, 2024, 105
  • [35] Cardy-like formula for the Schwarzschild black hole entropy
    Hassaine, Mokhtar
    PHYSICAL REVIEW D, 2020, 101 (08)
  • [36] Notes on thermodynamics of Schwarzschild-like bumblebee black hole
    An, Yu-Sen
    PHYSICS OF THE DARK UNIVERSE, 2024, 45
  • [37] Time-like geodesic structure of a spherically symmetric black hole in the brane-world
    Zhou Sheng
    Chen Ju-Hua
    Wang Yong-Jiu
    CHINESE PHYSICS B, 2011, 20 (10)
  • [38] Time-like geodesic structure of a spherically symmetric black hole in the brane-world
    周盛
    陈菊华
    王永久
    Chinese Physics B, 2011, 20 (10) : 96 - 100
  • [39] Geodesic congruences in modified Schwarzschild black holes
    Wang, Zi-Liang
    EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (10):
  • [40] Geodesic congruences in modified Schwarzschild black holes
    Zi-Liang Wang
    The European Physical Journal C, 82