Geodesic deviation analysis of time conformal Schwarzschild like black hole

被引:0
|
作者
Ghafar, Muhammad Saad [1 ,2 ]
Ali, Farhad [1 ]
Shah, Zahir [3 ]
Iqbal, Shahid [4 ]
Alshehri, Mansoor H. [5 ]
机构
[1] Kohat Univ Sci & Technol, Inst Numer Sci, Kohat 26000, Pakistan
[2] Natl Univ Modern Languages, Dept Math, Islamabad 44000, Pakistan
[3] Univ Lakki Marwat, Dept Math Sci, Khyber Pakhtunkhwa, Lakki Marwat 28420, Pakistan
[4] Univ Wisconsin La Crosse, Dept Phys, 1725 State St, La Crosse, WI 54601 USA
[5] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
关键词
Perturbation; Black hole; Approximation; Dynamics; DYNAMICS; PARTICLES; CLASSIFICATION; SPACETIMES;
D O I
10.1007/s12648-024-03341-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The astrophysical phenomena, for instance, the growth or decay of black holes (BHs), gravitational waves may continuously change the curvature of spacetimes. In addition, such phenomena also affect the thermodynamic structure of the sources over time. In this research, we examined the insertion of the time conformal factor e & varepsilon;f(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e<^>{\epsilon f(t)}$$\end{document} in the Renormalization Group Improved (RGI) Schwarzschild BH, without violating symmetry structure. We demonstrated that the curvature invariants, which are responsible for the spacetime structure around the time conformal Renormalization Group Improved Schwarzschild (TCRGIS) BH, depend explicitly on this time conformal factor. The parameter gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document} that appeared in these invariants gives a complete radial profile of the square of the Ricci tensor, the Ricci scalar and the Kretschmann scalar. For positive values of gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document} the behavior of the curvature of TCRGIS-BH is similar to both the RGI-BH and the Schwarzschild BH as it becomes infinite at center for gamma=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma =0$$\end{document}. Moreover, we have analyzed that the curvature invariants for TCRGIS BH decrease more rapidly as compared to both the RGI Schwarzschild BH and regular Schwarzschild BH, as a function of time.
引用
下载
收藏
页数:14
相关论文
共 50 条