PHYSICS-BASED FEEDFORWARD CONTROL OF THERMAL HISTORY IN LASER POWDER BED FUSION ADDITIVE MANUFACTURING

被引:0
|
作者
Riensche, Alex [1 ]
Bevans, Benjamin [1 ]
Smoqi, Ziyad [2 ]
Yavari, Reza [3 ]
Krishnan, Ajay [4 ]
Gilligan, Josie [5 ]
Piercy, Nicholas [2 ]
Cole, Kevin [2 ]
Rao, Prahalada [1 ]
机构
[1] Virginia Tech, Blacksburg, VA 24061 USA
[2] Univ Nebraska, Lincoln, NE USA
[3] Vulcan Forms, Burlington, MA USA
[4] Edison Welding Inst, Columbus, OH USA
[5] Lincoln Publ Sch, Lincoln, NE USA
基金
美国国家科学基金会;
关键词
Rapid Prototyping and Solid Freeform Fabrication; Welding and Joining; Control and Automation; Modeling and Simulation;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We developed and applied a model-based feedforward control approach to reduce temperature-induced flaw formation in the laser powder bed fusion (LPBF) additive manufacturing process. The feedforward control is built upon three basic steps. First, the thermal history of the part is rapidly predicted using a mesh-free graph theory model. Second, thermal history metrics are extracted from the model to identify regions of heat buildup, symptomatic of flaw formation. Third, process parameters are changed layer-by-layer based on insights from the thermal model. This technique was validated with two identical build plates (Inconel 718). Parts on the first build plate were made under manufacturer recommended nominal process parameters. Parts on the second build plate were made with model optimized process parameters. Results were validated with in-situ infrared thermography, and materials characterization techniques. Parts produced under controlled processing exhibited superior geometric accuracy and resolution, finer grain size, and increased microhardness.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Infrared Thermography for Laser-Based Powder Bed Fusion Additive Manufacturing Processes
    Moylan, Shawn
    Whitenton, Eric
    Lane, Brandon
    Slotwinski, John
    40TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 10TH INTERNATIONAL CONFERENCE ON BARKHAUSEN NOISE AND MICROMAGNETIC TESTING, VOLS 33A & 33B, 2014, 1581 : 1191 - 1196
  • [22] Laser Powder Bed Fusion Additive Manufacturing of Maraging Steel: A Review
    Kizhakkinan, Umesh
    Seetharaman, Sankaranarayanan
    Raghavan, Nagarajan
    Rosen, David W.
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2023, 145 (11):
  • [23] Laser melting modes in metal powder bed fusion additive manufacturing
    Zhao, Cang
    Shi, Bo
    Chen, Shuailei
    Du, Dong
    Sun, Tao
    Simonds, Brian J.
    Fezzaa, Kamel
    Rollett, Anthony D.
    REVIEWS OF MODERN PHYSICS, 2022, 94 (04)
  • [24] Identifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models
    Lopez, Felipe
    Witherell, Paul
    Lane, Brandon
    JOURNAL OF MECHANICAL DESIGN, 2016, 138 (11)
  • [25] Processing parameters in laser powder bed fusion metal additive manufacturing
    Oliveira, J. P.
    LaLonde, A. D.
    Ma, J.
    MATERIALS & DESIGN, 2020, 193
  • [26] Processing parameters in laser powder bed fusion metal additive manufacturing
    Oliveira, J.P.
    LaLonde, A.D.
    Ma, J.
    Materials and Design, 2020, 193
  • [27] Pulsed laser powder bed fusion additive manufacturing of A356
    Chou, S. C.
    Trask, M.
    Danovitch, J.
    Wang, X. L.
    Choi, J. P.
    Brochu, M.
    MATERIALS CHARACTERIZATION, 2018, 143 : 27 - 33
  • [28] Linear Active Disturbance Rejection Control for a Laser Powder Bed Fusion Additive Manufacturing Process
    Hussain, S. Zahid
    Kausar, Zareena
    Koreshi, Zafar Ullah
    Shah, Muhammad Faizan
    Abdullah, Ahmd
    Farooq, Muhammad Umer
    ELECTRONICS, 2023, 12 (02)
  • [29] Influences of Powder Packing Density in Laser Powder Bed Fusion Metal Additive Manufacturing
    Zhang Peng
    Zhang Shaoming
    Bi Zhongnan
    Tan Zhen
    Wang Rui
    Wang Rui
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (05)
  • [30] A physics-informed machine learning model for porosity analysis in laser powder bed fusion additive manufacturing
    Liu, Rui
    Liu, Sen
    Zhang, Xiaoli
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 113 (7-8): : 1943 - 1958