Multi-view Self-Expressive Subspace Clustering Network

被引:3
|
作者
Cui, Jinrong [1 ]
Li, Yuting [1 ]
Fu, Yulu [1 ]
Wen, Jie [2 ]
机构
[1] South China Agr Univ, Coll Math & Informat, Guangzhou, Peoples R China
[2] Harbin Inst Technol, Shenzhen Key Lab Visual Object Detect & Recognit, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; subspace learning; multi-view clustering; large-scale data; NONNEGATIVE MATRIX FACTORIZATION;
D O I
10.1145/3581783.3612237
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Advanced deep multi-view subspace clustering methods are based on the self-expressive model, which has achieved impressive performance. However, most existing works have several limitations: 1) They endure high computational complexity when learning a consistent affinity matrix, impeding their capacity to handle large-scale multi-view data; 2) The global and local structure information of multi-view data remains under-explored. To tackle these challenges, we propose a simplistic but holistic framework called Multi-view Self-Expressive Subspace Clustering (MSESC) network. Specifically, we design a deep metric network to replace the conventional self-expressive model, which can directly and efficiently produce the intrinsic similarity values of any instance-pairs of all views. Moreover, our method explores global and local structure information from the connectivity of instance-pairs across views and the nearest neighbors of instance-pairs within the view, respectively. By integrating global and local structure information within a unified framework, MSESC can learn a high-quality shared affinity matrix for better clustering performance. Extensive experimental results indicate the superiority of MSESC compared to several state-of-the-art methods.
引用
收藏
页码:417 / 425
页数:9
相关论文
共 50 条
  • [31] Feature concatenation multi-view subspace clustering
    Zheng, Qinghai
    Zhu, Jihua
    Li, Zhongyu
    Pang, Shanmin
    Wang, Jun
    Li, Yaochen
    NEUROCOMPUTING, 2020, 379 : 89 - 102
  • [32] Efficient Orthogonal Multi-view Subspace Clustering
    Chen, Man-Sheng
    Wang, Chang-Dong
    Huang, Dong
    Lai, Jian-Huang
    Yu, Philip S.
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 127 - 135
  • [33] Consistent and Specific Multi-View Subspace Clustering
    Luo, Shirui
    Zhang, Changqing
    Zhang, Wei
    Cao, Xiaochun
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3730 - 3737
  • [34] Generalized Multi-View Collaborative Subspace Clustering
    Lan, Mengcheng
    Meng, Min
    Yu, Jun
    Wu, Jigang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (06) : 3561 - 3574
  • [35] Multi-view Subspace Clustering on Topological Manifold
    Huang, Shudong
    Wu, Hongjie
    Ren, Yazhou
    Tsang, Ivor W.
    Xu, Zenglin
    Feng, Wentao
    Lv, Jiancheng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [36] Multi-view Subspace Clustering for Face Images
    Zhang, Xin
    Dinh Phung
    Venkatesh, Svetha
    Duc-Son Pham
    Liu, Wanquan
    2015 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2015, : 555 - 561
  • [37] Binary multi-view sparse subspace clustering
    Jianxi Zhao
    Yang Li
    Neural Computing and Applications, 2023, 35 : 21751 - 21770
  • [38] Split Multiplicative Multi-View Subspace Clustering
    Yang, Zhiyong
    Xu, Qianqian
    Zhang, Weigang
    Cao, Xiaochun
    Huang, Qingming
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (10) : 5147 - 5160
  • [39] Dual Weighted Multi-view Subspace Clustering
    Cao R.-W.
    Zhu J.-H.
    Hao W.-Y.
    Zhang C.-Q.
    Zhang Z.-H.
    Li Z.-Y.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (02): : 585 - 597
  • [40] Scalable Affine Multi-view Subspace Clustering
    Yu, Wanrong
    Wu, Xiao-Jun
    Xu, Tianyang
    Chen, Ziheng
    Kittler, Josef
    NEURAL PROCESSING LETTERS, 2023, 55 (04) : 4679 - 4696