MetaboLink: a web application for streamlined processing and analysis of large-scale untargeted metabolomics data

被引:0
|
作者
Mendes, Ana [1 ]
Havelund, Jesper Foged [1 ]
Lemvig, Jonas [1 ]
Schwammle, Veit [1 ]
Faergeman, Nils J. [1 ]
机构
[1] Univ Southern Denmark, Dept Biochem & Mol Biol, Campusvej 55, DK-5230 Odense M, Denmark
关键词
D O I
10.1093/bioinformatics/btae459
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation The post-processing and analysis of large-scale untargeted metabolomics data face significant challenges due to the intricate nature of correction, filtration, imputation, and normalization steps. Manual execution across various applications often leads to inefficiencies, human-induced errors, and inconsistencies within the workflow.Results Addressing these issues, we introduce MetaboLink, a novel web application designed to process LC-MS metabolomics datasets combining established methodologies and offering flexibility and ease of implementation. It offers visualization options for data interpretation, an interface for statistical testing, and integration with PolySTest for further tests and with VSClust for clustering analysis.Availability and implementation Fully functional tool is publicly available at https://computproteomics.bmb.sdu.dk/Metabolomics/. The source code is available at https://github.com/anitamnd/MetaboLink and a detailed description of the app can be found at https://github.com/anitamnd/MetaboLink/wiki. A tutorial video can be found at https://youtu.be/ZM6j10S6Z8Q.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] A hierarchical approach to removal of unwanted variation for large-scale metabolomics data
    Kim, Taiyun
    Tang, Owen
    Vernon, Stephen T.
    Kott, Katharine A.
    Koay, Yen Chin
    Park, John
    James, David E.
    Grieve, Stuart M.
    Speed, Terence P.
    Yang, Pengyi
    Figtree, Gemma A.
    O'Sullivan, John F.
    Yang, Jean Yee Hwa
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [42] Norm ISWSVR: A Data Integration and Normalization Approach for Large-Scale Metabolomics
    Ding, Xian
    Yang, Fen
    Chen, Yanhua
    Xu, Jing
    He, Jiuming
    Zhang, Ruiping
    Abliz, Zeper
    ANALYTICAL CHEMISTRY, 2022, 94 (21) : 7500 - 7509
  • [43] QA-Pagelet: Data preparation techniques for large-scale data analysis of the Deep Web
    Caverlee, J
    Liu, L
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (09) : 1247 - 1262
  • [44] Efficient processing and analysis of large-scale light-sheet microscopy data
    Fernando Amat
    Burkhard Höckendorf
    Yinan Wan
    William C Lemon
    Katie McDole
    Philipp J Keller
    Nature Protocols, 2015, 10 : 1679 - 1696
  • [45] Efficient processing and analysis of large-scale light-sheet microscopy data
    Amat, Fernando
    Hoeckendorf, Burkhard
    Wan, Yinan
    Lemon, William C.
    McDole, Katie
    Keller, Philipp J.
    NATURE PROTOCOLS, 2015, 10 (11) : 1679 - 1696
  • [46] Large-Scale Data Processing for Information Retrieval Applications
    Khandel, Pooya
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 3489 - 3489
  • [47] Parallel Strategy for the Large-Scale Data Streams Processing
    Yuan, Ya-Juan
    Ma, Guo-Jie
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND INFORMATION SYSTEMS, 2016, 52 : 232 - 234
  • [48] Data processing and evaluation for large-scale proteome profile
    Wu, S.
    Ying, W.
    Zhang, J.
    Xue, X.
    Qian, X.
    Zhu, Y.
    He, F.
    MOLECULAR & CELLULAR PROTEOMICS, 2006, 5 (10) : S121 - S121
  • [49] Distributed Data Processing for Large-Scale Simulations on Cloud
    Lu, Tianjian
    Hoyer, Stephan
    Wang, Qing
    Hu, Lily
    Chen, Yi-Fan
    2021 JOINT IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, SIGNAL & POWER INTEGRITY, AND EMC EUROPE (EMC+SIPI AND EMC EUROPE), 2021, : 53 - 58
  • [50] An Efficient Strategy for Large-Scale CORS Data Processing
    Xiong, Bolin
    Huang, Dingfa
    CHINA SATELLITE NAVIGATION CONFERENCE (CSNC) 2016 PROCEEDINGS, VOL I, 2016, 388 : 213 - 225