MetaboLink: a web application for streamlined processing and analysis of large-scale untargeted metabolomics data

被引:0
|
作者
Mendes, Ana [1 ]
Havelund, Jesper Foged [1 ]
Lemvig, Jonas [1 ]
Schwammle, Veit [1 ]
Faergeman, Nils J. [1 ]
机构
[1] Univ Southern Denmark, Dept Biochem & Mol Biol, Campusvej 55, DK-5230 Odense M, Denmark
关键词
D O I
10.1093/bioinformatics/btae459
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation The post-processing and analysis of large-scale untargeted metabolomics data face significant challenges due to the intricate nature of correction, filtration, imputation, and normalization steps. Manual execution across various applications often leads to inefficiencies, human-induced errors, and inconsistencies within the workflow.Results Addressing these issues, we introduce MetaboLink, a novel web application designed to process LC-MS metabolomics datasets combining established methodologies and offering flexibility and ease of implementation. It offers visualization options for data interpretation, an interface for statistical testing, and integration with PolySTest for further tests and with VSClust for clustering analysis.Availability and implementation Fully functional tool is publicly available at https://computproteomics.bmb.sdu.dk/Metabolomics/. The source code is available at https://github.com/anitamnd/MetaboLink and a detailed description of the app can be found at https://github.com/anitamnd/MetaboLink/wiki. A tutorial video can be found at https://youtu.be/ZM6j10S6Z8Q.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Quality Assessment of Untargeted Analytical Data in a Large-Scale Metabolomic Study
    Saito, Rintaro
    Sugimoto, Masahiro
    Hirayama, Akiyoshi
    Soga, Tomoyoshi
    Tomita, Masaru
    Takebayashi, Toru
    JOURNAL OF CLINICAL MEDICINE, 2021, 10 (09)
  • [22] Denoising Autoencoder Normalization for Large-Scale Untargeted Metabolomics by Gas Chromatography-Mass Spectrometry
    Zhang, Ying
    Fan, Sili
    Wohlgemuth, Gert
    Fiehn, Oliver
    METABOLITES, 2023, 13 (08)
  • [23] UmetaFlow: an untargeted metabolomics workflow for high-throughput data processing and analysis
    Kontou, Eftychia E.
    Walter, Axel
    Alka, Oliver
    Pfeuffer, Julianus
    Sachsenberg, Timo
    Mohite, Omkar S.
    Nuhamunada, Matin
    Kohlbacher, Oliver
    Weber, Tilmann
    JOURNAL OF CHEMINFORMATICS, 2023, 15 (01)
  • [24] UmetaFlow: an untargeted metabolomics workflow for high-throughput data processing and analysis
    Eftychia E. Kontou
    Axel Walter
    Oliver Alka
    Julianus Pfeuffer
    Timo Sachsenberg
    Omkar S. Mohite
    Matin Nuhamunada
    Oliver Kohlbacher
    Tilmann Weber
    Journal of Cheminformatics, 15
  • [25] Active disks for large-scale data processing
    Riedel, E
    Faloutsos, C
    Gibson, GA
    Nagle, D
    COMPUTER, 2001, 34 (06) : 68 - +
  • [26] Processing large-scale data with Apache Spark
    Ko, Seyoon
    Won, Joong-Ho
    KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (06) : 1077 - 1094
  • [27] AUTOMATING LARGE-SCALE PROCESSING OF DOSIMETRY DATA
    PAWLYK, DA
    SIEGEL, JA
    SHARKEY, RM
    GOLDENBERG, DM
    JOURNAL OF NUCLEAR MEDICINE, 1993, 34 (05) : P160 - P160
  • [28] MetMiner: A user-friendly pipeline for large-scale plant metabolomics data analysis
    Xiao Wang
    Shuang Liang
    Wenqi Yang
    Ke Yu
    Fei Liang
    Bing Zhao
    Xiang Zhu
    Chao Zhou
    Luis AJMur
    Jeremy ARoberts
    Junli Zhang
    Xuebin Zhang
    Journal of Integrative Plant Biology, 2024, 66 (11) : 2329 - 2345
  • [29] MetMiner: A user-friendly pipeline for large-scale plant metabolomics data analysis
    Wang, Xiao
    Liang, Shuang
    Yang, Wenqi
    Yu, Ke
    Liang, Fei
    Zhao, Bing
    Zhu, Xiang
    Zhou, Chao
    Mur, Luis A. J.
    Roberts, Jeremy A.
    Zhang, Junli
    Zhang, Xuebin
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2024,
  • [30] Automated Parallel Data Processing Engine with Application to Large-scale Feature Extraction
    Xing, Xin
    Dong, Bin
    Ajo-Franklin, Jonathan
    Wu, Kesheng
    PROCEEDINGS OF 2018 IEEE/ACM MACHINE LEARNING IN HPC ENVIRONMENTS (MLHPC 2018), 2018, : 37 - 46