Discriminating Spectral-Spatial Feature Extraction for Hyperspectral Image Classification: A Review

被引:2
|
作者
Li, Ningyang [1 ]
Wang, Zhaohui [1 ]
Cheikh, Faouzi Alaya [2 ]
机构
[1] Hainan Univ, Fac Comp Sci & Technol, Haikou 570228, Peoples R China
[2] Norwegian Univ Sci & Technol, Fac Informat Technol & Elect Engn, N-2815 Gjovik, Norway
关键词
hyperspectral image classification; discriminating spectral-spatial features; feature extraction; feature optimization; CONVOLUTIONAL NEURAL-NETWORK; BAND SELECTION; ATTENTION TRANSFORMER; SELF-ATTENTION; VISION TRANSFORMER; KERNEL; FUSION; RECONSTRUCTION; INFORMATION; SVM;
D O I
10.3390/s24102987
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Hyperspectral images (HSIs) contain subtle spectral details and rich spatial contextures of land cover that benefit from developments in spectral imaging and space technology. The classification of HSIs, which aims to allocate an optimal label for each pixel, has broad prospects in the field of remote sensing. However, due to the redundancy between bands and complex spatial structures, the effectiveness of the shallow spectral-spatial features extracted by traditional machine-learning-based methods tends to be unsatisfying. Over recent decades, various methods based on deep learning in the field of computer vision have been proposed to allow for the discrimination of spectral-spatial representations for classification. In this article, the crucial factors to discriminate spectral-spatial features are systematically summarized from the perspectives of feature extraction and feature optimization. For feature extraction, techniques to ensure the discrimination of spectral features, spatial features, and spectral-spatial features are illustrated based on the characteristics of hyperspectral data and the architecture of models. For feature optimization, techniques to adjust the feature distances between classes in the classification space are introduced in detail. Finally, the characteristics and limitations of these techniques and future challenges in facilitating the discrimination of features for HSI classification are also discussed further.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] Deep Spectral-Spatial Feature Extraction Based on DCGAN for Hyperspectral Image Retrieval
    Chen, Lu
    Zhang, Jing
    Liang, Xi
    Li, Jiafeng
    Zhuo, Li
    2017 IEEE 15TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 15TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 3RD INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS(DASC/PICOM/DATACOM/CYBERSCI, 2017, : 752 - 759
  • [22] Spectral-Spatial Feature Extraction for Hyperspectral Anomaly Detection
    Lei, Jie
    Xie, Weiying
    Yang, Jian
    Li, Yunsong
    Chang, Chein-, I
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (10): : 8131 - 8143
  • [23] Spectral-Spatial Feature Extraction With Dual Graph Autoencoder for Hyperspectral Image Clustering
    Zhang, Yongshan
    Wang, Yang
    Chen, Xiaohong
    Jiang, Xinwei
    Zhou, Yicong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8500 - 8511
  • [24] Tensor Discriminative Locality Alignment for Hyperspectral Image Spectral-Spatial Feature Extraction
    Zhang, Liangpei
    Zhang, Lefei
    Tao, Dacheng
    Huang, Xin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (01): : 242 - 256
  • [25] Hyperspectral Image Classification Based on Deep Forest and Spectral-Spatial Cooperative Feature
    Li, Mingyang
    Zhang, Ning
    Pan, Bin
    Xie, Shaobiao
    Wu, Xi
    Shi, Zhenwei
    IMAGE AND GRAPHICS (ICIG 2017), PT III, 2017, 10668 : 325 - 336
  • [26] A Hybrid-Order Spectral-Spatial Feature Network for Hyperspectral Image Classification
    Liu, Dongxu
    Han, Guangliang
    Liu, Peixun
    Wang, Yirui
    Yang, Hang
    Chen, Dianbing
    Li, Qingqing
    Wu, Jiajia
    REMOTE SENSING, 2022, 14 (15)
  • [27] Superpixel guided spectral-spatial feature extraction and weighted feature fusion for hyperspectral image classification with limited training samples
    Li, Yao
    Zhang, Liyi
    Chen, Lei
    Ma, Yunpeng
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [28] A Decompressed Spectral-Spatial Multiscale Semantic Feature Network for Hyperspectral Image Classification
    Liu, Dongxu
    Li, Qingqing
    Li, Meihui
    Zhang, Jianlin
    REMOTE SENSING, 2023, 15 (18)
  • [29] Multiscale spectral-spatial cross-extraction network for hyperspectral image classification
    Gao, Hongmin
    Wu, Hongyi
    Chen, Zhonghao
    Zhang, Yunfei
    Zhang, Yiyan
    Li, Chenming
    IET IMAGE PROCESSING, 2022, 16 (03) : 755 - 771
  • [30] Spectral-Spatial Feature Extraction Network With SSM-CNN for Hyperspectral-Multispectral Image Collaborative Classification
    Wang, Qingwang
    Fan, Xingxing
    Huang, Jiangbo
    Li, Shuai
    Shen, Tao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 17555 - 17566