A Hybrid-Order Spectral-Spatial Feature Network for Hyperspectral Image Classification

被引:1
|
作者
Liu, Dongxu [1 ,2 ]
Han, Guangliang [1 ]
Liu, Peixun [1 ]
Wang, Yirui [1 ,2 ]
Yang, Hang [1 ]
Chen, Dianbing [1 ]
Li, Qingqing [1 ,2 ]
Wu, Jiajia [1 ,2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
hyperspectral image classification; first-order feature; second-order representation; spectral-spatial feature; DOMAIN ADAPTATION; CNN;
D O I
10.3390/rs14153555
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Convolutional neural networks are widely applied in hyperspectral image (HSI) classification and show excellent performance. However, there are two challenges: the first is that fine features are generally lost in the process of depth transfer; the second is that most existing studies usually restore to first-order features, whereas they rarely consider second-order representations. To tackle the above two problems, this article proposes a hybrid-order spectral-spatial feature network (HS(2)FNet) for hyperspectral image classification. This framework consists of a precedent feature extraction module (PFEM) and a feature rethinking module (FRM). The former is constructed to capture multiscale spectral-spatial features and focus on adaptively recalibrate channel-wise and spatial-wise feature responses to achieve first-order spectral-spatial feature distillation. The latter is devised to heighten the representative ability of HSI by capturing the importance of feature cross-dimension, while learning more discriminative representations by exploiting the second-order statistics of HSI, thereby improving the classification performance. Massive experiments demonstrate that the proposed network achieves plausible results compared with the state-of-the-art classification methods.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] A Decompressed Spectral-Spatial Multiscale Semantic Feature Network for Hyperspectral Image Classification
    Liu, Dongxu
    Li, Qingqing
    Li, Meihui
    Zhang, Jianlin
    REMOTE SENSING, 2023, 15 (18)
  • [2] A Lightweight Spectral-Spatial Feature Extraction and Fusion Network for Hyperspectral Image Classification
    Chen, Linlin
    Wei, Zhihui
    Xu, Yang
    REMOTE SENSING, 2020, 12 (09)
  • [3] Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Sun, Hao
    Zheng, Xiangtao
    Lu, Xiaoqiang
    Wu, Siyuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3232 - 3245
  • [4] Masked Spectral-Spatial Feature Prediction for Hyperspectral Image Classification
    Zhou, Feng
    Xu, Chao
    Yang, Guowei
    Hang, Renlong
    Liu, Qingshan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 13
  • [5] Hyperspectral Image Classification Based on Spectral-Spatial Feature Extraction
    Ye, Zhen
    Tan, Lian
    Bai, Lin
    2017 INTERNATIONAL WORKSHOP ON REMOTE SENSING WITH INTELLIGENT PROCESSING (RSIP 2017), 2017,
  • [6] Spectral-Spatial Discriminant Feature Learning for Hyperspectral Image Classification
    Dong, Chunhua
    Naghedolfeizi, Masoud
    Aberra, Dawit
    Zeng, Xiangyan
    REMOTE SENSING, 2019, 11 (13)
  • [7] Multiscale spectral-spatial feature learning for hyperspectral image classification
    Sohail, Muhammad
    Chen, Zhao
    Yang, Bin
    Liu, Guohua
    DISPLAYS, 2022, 74
  • [8] Superpixel Spectral-Spatial Feature Fusion Graph Convolution Network for Hyperspectral Image Classification
    Gong, Zhi
    Tong, Lei
    Zhou, Jun
    Qian, Bin
    Duan, Lijuan
    Xiao, Chuangbai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [9] Asymmetric coordinate attention spectral-spatial feature fusion network for hyperspectral image classification
    Shuli Cheng
    Liejun Wang
    Anyu Du
    Scientific Reports, 11
  • [10] Asymmetric coordinate attention spectral-spatial feature fusion network for hyperspectral image classification
    Cheng, Shuli
    Wang, Liejun
    Du, Anyu
    SCIENTIFIC REPORTS, 2021, 11 (01)