Bidirectional coupling in fractional order maps of incommensurate orders

被引:0
|
作者
Bhalekar, Sachin [1 ]
Gade, Prashant M. [2 ]
Joshi, Divya D. [2 ]
机构
[1] Univ Hyderabad, Sch Math & Stat, Prof CR Rao Rd, Hyderabad 500046, Telangana, India
[2] Rashtrasant Tukadoji Maharaj Nagpur Univ, Dept Phys, Amravati Rd, Nagpur 440033, Maharashtra, India
关键词
Fractional order maps; Incommensurate order; Stability analysis; Bidirectional coupling; MEDIA THEORY; CALCULUS; SYNCHRONIZATION; VISCOELASTICITY; BEHAVIOR; MODELS;
D O I
10.1016/j.chaos.2024.115324
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the stability of bidirectionally coupled integer and fractional-order maps. The system is further generalized to the case where both the equations have fractional order difference operators. We derive stability conditions for the synchronized fixed point in both cases. We show that this formalism can be extended to inhomogeneous systems of N coupled map where any map can be of arbitrary fractional order or integer order. We give a solution to a specific case of a system with periodic disorder where alternate maps are of integer and fractional order or different fractional orders.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Asymptotic Stability of Fractional-Order Incommensurate Neural Networks
    Chen, Liping
    Gu, Panpan
    Lopes, Antonio M.
    Chai, Yi
    Xu, Shuiqing
    Ge, Suoliang
    NEURAL PROCESSING LETTERS, 2023, 55 (05) : 5499 - 5513
  • [32] Lyapunov Stability Analysis for Incommensurate Nabla Fractional Order Systems
    Yiheng Wei
    Xuan Zhao
    Yingdong Wei
    Yangquan Chen
    Journal of Systems Science and Complexity, 2023, 36 : 555 - 576
  • [33] On the Stability of Linear Incommensurate Fractional-Order Difference Systems
    Djenina, Noureddine
    Ouannas, Adel
    Batiha, Iqbal M.
    Grassi, Giuseppe
    Pham, Viet-Thanh
    MATHEMATICS, 2020, 8 (10) : 1 - 12
  • [34] Stabilization of a new commensurate/incommensurate fractional order chaotic system
    Gholamin, P.
    Sheikhani, A. H. Refahi
    Ansari, A.
    ASIAN JOURNAL OF CONTROL, 2021, 23 (02) : 882 - 893
  • [35] Lyapunov Stability Analysis for Incommensurate Nabla Fractional Order Systems
    WEI Yiheng
    ZHAO Xuan
    WEI Yingdong
    CHEN Yangquan
    Journal of Systems Science & Complexity, 2023, 36 (02) : 555 - 576
  • [36] Asymptotic Stability of Fractional-Order Incommensurate Neural Networks
    Liping Chen
    Panpan Gu
    António M. Lopes
    Yi Chai
    Shuiqing Xu
    Suoliang Ge
    Neural Processing Letters, 2023, 55 : 5499 - 5513
  • [37] Synchronization in coupled nonidentical incommensurate fractional-order systems
    Wang, Jun-Wei
    Zhang, Yan-Bin
    PHYSICS LETTERS A, 2009, 374 (02) : 202 - 207
  • [38] Numerical Stability Analysis of Linear Incommensurate Fractional Order Systems
    Das, Sambit
    Chatterjee, Anindya
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2013, 8 (04):
  • [39] Hopf Bifurcation Analysis of a Delayed Fractional BAM Neural Network Model with Incommensurate Orders
    Li, Bingbing
    Liao, Maoxin
    Xu, Changjin
    Li, Weinan
    NEURAL PROCESSING LETTERS, 2023, 55 (05) : 5905 - 5921
  • [40] STABILITY ANALYSIS OF A FRACTIONAL PREDATOR-PREY SYSTEM WITH TWO DELAYS AND INCOMMENSURATE ORDERS
    Zhu, Yingxian
    Li, Shuangfei
    Dai, Yunxian
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (03): : 981 - 1006