Bidirectional coupling in fractional order maps of incommensurate orders

被引:0
|
作者
Bhalekar, Sachin [1 ]
Gade, Prashant M. [2 ]
Joshi, Divya D. [2 ]
机构
[1] Univ Hyderabad, Sch Math & Stat, Prof CR Rao Rd, Hyderabad 500046, Telangana, India
[2] Rashtrasant Tukadoji Maharaj Nagpur Univ, Dept Phys, Amravati Rd, Nagpur 440033, Maharashtra, India
关键词
Fractional order maps; Incommensurate order; Stability analysis; Bidirectional coupling; MEDIA THEORY; CALCULUS; SYNCHRONIZATION; VISCOELASTICITY; BEHAVIOR; MODELS;
D O I
10.1016/j.chaos.2024.115324
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the stability of bidirectionally coupled integer and fractional-order maps. The system is further generalized to the case where both the equations have fractional order difference operators. We derive stability conditions for the synchronized fixed point in both cases. We show that this formalism can be extended to inhomogeneous systems of N coupled map where any map can be of arbitrary fractional order or integer order. We give a solution to a specific case of a system with periodic disorder where alternate maps are of integer and fractional order or different fractional orders.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Asymptotic cycles in fractional maps of arbitrary positive orders
    Mark Edelman
    Avigayil B. Helman
    Fractional Calculus and Applied Analysis, 2022, 25 : 181 - 206
  • [22] Chaos in the incommensurate fractional order system and circuit simulations
    Zourmba K.
    Oumate A.A.
    Gambo B.
    Effa J.Y.
    Mohamadou A.
    International Journal of Dynamics and Control, 2019, 7 (01) : 94 - 111
  • [23] Fractional order filter with two fractional elements of dependant orders
    Soltan, A.
    Radwan, A. G.
    Soliman, Ahmed M.
    MICROELECTRONICS JOURNAL, 2012, 43 (11) : 818 - 827
  • [24] Pontryagin Maximum Principle for Incommensurate Fractional-Orders Optimal Control Problems
    Ndairou, Faical
    Torres, Delfim F. M.
    MATHEMATICS, 2023, 11 (19)
  • [25] Bifurcations in a delayed fractional model of glucose-insulin interaction with incommensurate orders
    Lekdee, Natchapon
    Sirisubtawee, Sekson
    Koonprasert, Sanoe
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [26] Controlling bifurcation in a delayed fractional predator-prey system with incommensurate orders
    Huang, Chengdai
    Cao, Jinde
    Xiao, Min
    Alsaedi, Ahmed
    Alsaadi, Fuad E.
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 293 : 293 - 310
  • [27] Computation of Orders of a Commensurable Fractional Order Model
    Stark, Oliver
    Kupper, Martin
    Krebs, Stefan
    Hohmann, Soeren
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 784 - 790
  • [28] A fractional PI observer for incommensurate fractional order systems under parametric uncertainties
    Josue Oliva-Gonzalez, Lorenz
    Martinez-Guerra, Rafael
    Pablo Flores-Flores, Juan
    ISA TRANSACTIONS, 2023, 137 (275-287) : 275 - 287
  • [29] Coupling of replicate order-parameters in incommensurate multiferroics
    Mettout, Bruno
    Toledano, Pierre
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (08)
  • [30] Lyapunov Stability Analysis for Incommensurate Nabla Fractional Order Systems
    Wei, Yiheng
    Zhao, Xuan
    Wei, Yingdong
    Chen, Yangquan
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2023, 36 (02) : 555 - 576