Real-space atomic dynamics in metallic liquids investigated by inelastic neutron scattering

被引:0
|
作者
Wang, Zengquan [1 ]
Dmowski, Wojciech [1 ]
Wang, Hui [1 ]
Ashcraft, Robert [2 ,3 ]
Abernathy, Douglas L. [4 ]
Kelton, Kenneth F. [2 ,3 ]
Egami, Takeshi [1 ,5 ,6 ]
机构
[1] Univ Tennessee, Dept Mat Sci & Engn, Shull Wollan Ctr, Knoxville, TN 37996 USA
[2] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[3] Washington Univ, Inst Mat Sci & Engn, St Louis, MO 63130 USA
[4] Oak Ridge Natl Lab, Neutron Scattering Div, Oak Ridge, TN 37831 USA
[5] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[6] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
DENSITY-FLUCTUATIONS; VISUALIZATION; RUBIDIUM; GLASSES;
D O I
10.1103/PhysRevB.110.024309
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Understanding the dynamics of liquids at the atomic level remains a major challenge. Even though viscosity is one of the most fundamental properties of liquids, its atomistic origin is not fully elucidated. Through inelastic neutron scattering experiment on levitated metallic liquid droplets, the time-dependent pair correlation function, the Van Hove function, was determined for Zr50Cu50 and Zr80Pt20 liquids at various temperatures. The time for change in local atomic connectivity, tau LC, which is the timescale of atomic bond cutting and forming, is estimated based on the exponential decay of the nearest neighbor peak of the Van Hove function. At high temperatures above the crossover temperature TA, tau LC is equal to the Maxwell relaxation time, tau M = eta/G infinity, where eta is the macroscopic shear viscosity and G infinity is the high-frequency shear modulus. Below TA the ratio of tau M/tau LC increases with decreasing temperature, indicating increased atomic cooperativity as predicted by molecular dynamics simulation.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Viscosity and real-space molecular motion of water: Observation with inelastic x-ray scattering
    Shinohara, Yuya
    Dmowski, Wojciech
    Iwashita, Takuya
    Wu, Bin
    Ishikawa, Daisuke
    Baron, Alfred Q. R.
    Egami, Takeshi
    PHYSICAL REVIEW E, 2018, 98 (02)
  • [22] Real-space Green's function approach to resonant inelastic x-ray scattering
    Kas, J. J.
    Rehr, J. J.
    Soininen, J. A.
    Glatzel, P.
    PHYSICAL REVIEW B, 2011, 83 (23)
  • [23] Real-space interpretation of spin-echo small-angle neutron scattering
    Krouglov, T
    de Schepper, IM
    Bouwman, WG
    Rekveldt, MT
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2003, 36 : 117 - 124
  • [24] Quantum Simulation of Real-Space Dynamics
    Childs, Andrew M.
    Leng, Jiaqi
    Li, Tongyan
    Liu, Jin-Peng
    Zhang, Chenyi
    QUANTUM, 2022, 6
  • [25] Atomic dynamics in metallic liquids and glasses
    Egami, T.
    Levashov, V.
    Aga, R. S.
    Morris, J. R.
    MATERIALS TRANSACTIONS, 2007, 48 (07) : 1729 - 1733
  • [26] REAL-SPACE ANALYSIS OF NEUTRON DIFFUSE-SCATTERING FROM ALPHA-AGI
    TSUCHIYA, Y
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1987, 20 (31): : 5001 - 5009
  • [27] Proton vibrational dynamics in lithium imide investigated through incoherent inelastic and Compton neutron scattering
    Pietropaolo, A.
    Colognesi, D.
    Catti, M.
    Nale, A. -C.
    Adams, M. A.
    Ramirez-Cuesta, A. J.
    Mayers, J.
    JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (20):
  • [28] Short-time dynamics on a metallic glass as probed by deep inelastic neutron scattering
    Dawidowski, J
    Bermejo, FJ
    Barquin, LF
    Gorria, P
    Barandiaran, JM
    Evans, AC
    Mayers, J
    PHYSICS LETTERS A, 1996, 214 (1-2) : 59 - 64
  • [29] DISPLAY OF REAL-SPACE SCATTERING IN THE EWALD CONSTRUCTION
    LIBOFF, RL
    AMERICAN JOURNAL OF PHYSICS, 1992, 60 (12) : 1152 - 1152
  • [30] Real-space imaging of fractional quantum Hall liquids
    Hayakawa, Junichiro
    Muraki, Koji
    Yusa, Go
    NATURE NANOTECHNOLOGY, 2013, 8 (01) : 31 - 35