Quantum Simulation of Real-Space Dynamics

被引:0
|
作者
Childs, Andrew M. [1 ,2 ]
Leng, Jiaqi [1 ,3 ]
Li, Tongyan [4 ,5 ,6 ]
Liu, Jin-Peng [1 ,3 ]
Zhang, Chenyi [7 ]
机构
[1] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Park, MA 20742 USA
[2] Univ Maryland, Dept Comp Sci, College Park, MA 20742 USA
[3] Univ Maryland, Dept Math, College Park, MA USA
[4] Peking Univ, Ctr Frontiers Comp Studies, Beijing, Peoples R China
[5] Peking Univ, Sch Comp Sci, Beijing, Peoples R China
[6] MIT, Ctr Theoret Phys, Cambridge, MA USA
[7] Tsinghua Univ, Inst Interdisciplinary Informat Sci, Beijing, Peoples R China
来源
QUANTUM | 2022年 / 6卷
基金
美国国家科学基金会;
关键词
HAMILTONIAN SIMULATION; ALGORITHMS; COMPUTATION;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum simulation is a prominent application of quantum computers. While there is extensive previous work on simulating finite-dimensional systems, less is known about quantum algorithms for real-space dynamics. We conduct a systematic study of such algorithms. In particular, we show that the dynamics of a d-dimensional Schrodinger equation with eta particles can be simulated with gate complexity(1) (O) over tilde (eta dF poly(log(g'/epsilon))), where epsilon is the discretization error, g' controls the higher-order derivatives of the wave function, and F measures the time-integrated strength of the potential. Compared to the best previous results, this exponentially improves the dependence on epsilon and g' from poly (g'/epsilon) to poly(log(g'/epsilon)) and polynomially improves the dependence on T and d, while maintaining best known performance with respect to eta. For the case of Coulomb interactions, we give an algorithm using eta(3)(d + eta) T poly(log(eta dTg'/(Delta epsilon)))/Delta one- and two-qubit gates, and another using eta(3)(4d)T-d/2 poly(log(eta dTg'/(Delta epsilon)))/Delta one- and two-qubit gates and QRAM operations, where T is the evolution time and the parameter Delta regulates the unbounded Coulomb interaction. We give applications to several computational problems, including faster real-space simulation of quantum chemistry, rigorous analysis of discretization error for simulation of a uniform electron gas, and a quadratic improvement to a quantum algorithm for escaping saddle points in nonconvex optimization.
引用
收藏
页数:47
相关论文
共 50 条
  • [1] Real-space entanglement of quantum fields
    Martin, Jerome
    Vennin, Vincent
    [J]. PHYSICAL REVIEW D, 2021, 104 (08)
  • [2] Real-Space Description of Dynamics of Liquids
    Egami, Takeshi
    [J]. QUANTUM BEAM SCIENCE, 2018, 2 (04)
  • [3] Hybrid quantum mechanical/molecular dynamics simulation on parallel computers: density functional theory on real-space multigrids
    Ogata, S
    Shimojo, F
    Kalia, RK
    Nakano, A
    Vashishta, P
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2002, 149 (01) : 30 - 38
  • [4] Quantum real-space transfer in semiconductor heterostructures
    Yang, RQ
    [J]. APPLIED PHYSICS LETTERS, 1998, 73 (22) : 3265 - 3267
  • [5] REAL-SPACE QUANTUM RENORMALIZATION-GROUPS
    WHITE, SR
    NOACK, RM
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (24) : 3487 - 3490
  • [6] REAL-SPACE RENORMALIZATION GROUP FOR CRITICAL DYNAMICS
    ACHIAM, Y
    KOSTERLITZ, JM
    [J]. PHYSICAL REVIEW LETTERS, 1978, 41 (02) : 128 - 131
  • [7] CRITICAL DYNAMICS BY REAL-SPACE RENORMALIZATION GROUP
    KINZEL, W
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1978, 29 (04): : 361 - 362
  • [8] Real-space spectral simulation of quantum spin models: Application to generalized Kitaev models
    Brito, Francisco M. O.
    Ferreira, Aires
    [J]. SCIPOST PHYSICS CORE, 2024, 7 (01):
  • [9] QUANTUM-MECHANICAL EVOLUTION OF REAL-SPACE TRANSFER
    BRUNETTI, R
    JACOBONI, C
    PRICE, PJ
    [J]. PHYSICAL REVIEW B, 1994, 50 (16): : 11872 - 11878
  • [10] Real-space imaging of fractional quantum Hall liquids
    Hayakawa J.
    Muraki K.
    Yusa G.
    [J]. Nature Nanotechnology, 2013, 8 (1) : 31 - 35