Arithmetic properties and asymptotic formulae for σomex(n) and σemex(n)

被引:0
|
作者
Barman, Rupam [1 ]
Singh, Gurinder [1 ]
机构
[1] Indian Inst Technol, Dept Math, Gauhati 781039, Assam, India
来源
RAMANUJAN JOURNAL | 2024年 / 65卷 / 01期
关键词
Partitions; Minimal exludents; Congruences; Asymptotic formula;
D O I
10.1007/s11139-024-00886-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The minimal excludant of an integer partition is the least positive integer missing from the partition. Let sigma(o)mex(n) (resp., sigma(e)mex(n)) denote the sum of odd (resp., even) minimal excludants over all the partitions of n. Recently, Baruah et al. proved a few congruences for these partition functions modulo 4 and 8, and asked for asymptotic formulae for the same. In this article, we study the lacunarity of sigma(o)mex(n) and sigma(e)mex(n) modulo arbitrary powers of 2 and also prove some infinite families of congruences for sigma(o)mex(n) and sigma(e)mex(n) modulo 4 and 8
引用
收藏
页码:125 / 137
页数:13
相关论文
共 50 条
  • [31] SOME USEFUL FORMULAE IN SU(N) ALGEBRA
    宗红石
    冯世祥
    王子兴
    NuclearScienceandTechniques, 1995, (04) : 225 - 229
  • [32] Explicit formulae and convergence rate for the system Mα/G/1/N as N→∞
    Bratiychuk, M
    Borowska, B
    STOCHASTIC MODELS, 2002, 18 (01) : 71 - 84
  • [33] N CONSECUTIVE INTEGERS IN AN ARITHMETIC PROGRESSION
    EVANS, R
    ACTA SCIENTIARUM MATHEMATICARUM, 1972, 33 (3-4): : 295 - 296
  • [34] Arithmetic of N=8 black holes
    Sen, Ashoke
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (02):
  • [35] ARITHMETIC SUBGROUPS OF SL (N,K)
    CHAHAL, JS
    ARCHIV DER MATHEMATIK, 1979, 32 (06) : 539 - 547
  • [36] ARITHMETIC PROGRESSION OF INTEGERS PRIME TO N
    JUST, E
    SCHAUMBE.N
    MOORE, DM
    WELLS, C
    UPATISRI.V
    CHUCK, A
    GOLDSTEI.P
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (08): : 907 - &
  • [37] ARITHMETIC FUNCTION TAUK,R(N)
    SIVARAMA.R
    AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (09): : 988 - &
  • [38] Asymptotic properties of some functions related to regular integers modulo n
    Apostol, Bradut
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2017, 60 (03): : 221 - 231
  • [39] On the asymptotic behavior of sums Σn≤x f (n){x/n}k
    Wu, Liuying
    Shi, Sanying
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (06) : 1263 - 1274
  • [40] ASYMPTOTIC TO PI-(N)
    HENSLEY, DA
    AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (02): : 136 - 136