The minimal excludant of an integer partition is the least positive integer missing from the partition. Let sigma(o)mex(n) (resp., sigma(e)mex(n)) denote the sum of odd (resp., even) minimal excludants over all the partitions of n. Recently, Baruah et al. proved a few congruences for these partition functions modulo 4 and 8, and asked for asymptotic formulae for the same. In this article, we study the lacunarity of sigma(o)mex(n) and sigma(e)mex(n) modulo arbitrary powers of 2 and also prove some infinite families of congruences for sigma(o)mex(n) and sigma(e)mex(n) modulo 4 and 8
机构:
Chapman Univ, One Univ Dr, Orange, CA 92866 USA
Univ Bordeaux, UMR 5251, IMB, F-33405 Talence, FranceChapman Univ, One Univ Dr, Orange, CA 92866 USA
Sebbar, Ahmed
Gay, Roger
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bordeaux, UMR 5251, IMB, F-33405 Talence, FranceChapman Univ, One Univ Dr, Orange, CA 92866 USA
机构:
Inst Nacl Matemat Pura & Aplicada IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, BrazilInst Nacl Matemat Pura & Aplicada IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil