Arithmetic properties and asymptotic formulae for σomex(n) and σemex(n)

被引:0
|
作者
Barman, Rupam [1 ]
Singh, Gurinder [1 ]
机构
[1] Indian Inst Technol, Dept Math, Gauhati 781039, Assam, India
来源
RAMANUJAN JOURNAL | 2024年 / 65卷 / 01期
关键词
Partitions; Minimal exludents; Congruences; Asymptotic formula;
D O I
10.1007/s11139-024-00886-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The minimal excludant of an integer partition is the least positive integer missing from the partition. Let sigma(o)mex(n) (resp., sigma(e)mex(n)) denote the sum of odd (resp., even) minimal excludants over all the partitions of n. Recently, Baruah et al. proved a few congruences for these partition functions modulo 4 and 8, and asked for asymptotic formulae for the same. In this article, we study the lacunarity of sigma(o)mex(n) and sigma(e)mex(n) modulo arbitrary powers of 2 and also prove some infinite families of congruences for sigma(o)mex(n) and sigma(e)mex(n) modulo 4 and 8
引用
收藏
页码:125 / 137
页数:13
相关论文
共 50 条