INFERENCE FOR HETEROSKEDASTIC PCA WITH MISSING DATA

被引:2
|
作者
Yan, Yuling [1 ]
Chen, Yuxin [2 ]
Fan, Jianqing [3 ]
机构
[1] MIT, Inst Data Syst & Soc, Cambridge, MA 02144 USA
[2] Univ Penn, Wharton Sch, Dept Stat & Data Sci, Philadelphia, PA USA
[3] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ USA
来源
ANNALS OF STATISTICS | 2024年 / 52卷 / 02期
关键词
Principal component analysis; confidence regions; missing data; uncertainty quantification; heteroskedastic data; subspace estimation; LOW-RANK MATRIX; CONFIDENCE-INTERVALS; UNCERTAINTY QUANTIFICATION; PRINCIPAL COMPONENTS; SINGULAR SUBSPACES; LARGEST EIGENVALUE; ROBUST REGRESSION; GRADIENT DESCENT; COMPLETION; NOISY;
D O I
10.1214/24-AOS2366
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies how to construct confidence regions for principal component analysis (PCA) in high dimension, a problem that has been vastly underexplored. While computing measures of uncertainty for nonlinear/nonconvex estimators is in general difficult in high dimension, the challenge is further compounded by the prevalent presence of missing data and heteroskedastic noise. We propose a novel approach to performing valid inference on the principal subspace, on the basis of an estimator called HeteroPCA guarantees for HeteroPCA, and demonstrate how these can be invoked to compute both confidence regions for the principal subspace and entrywise confidence intervals for the spiked covariance matrix. Our inference procedures are fully data-driven and adaptive to heteroskedastic random noise, without requiring prior knowledge about the noise levels.
引用
收藏
页码:729 / 756
页数:28
相关论文
共 50 条
  • [31] IDENTIFYING KEY MISSING DATA FOR INFERENCE UNDER UNCERTAINTY
    WANG, JC
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 1994, 10 (04) : 287 - 309
  • [32] Inference in partially identified heteroskedastic simultaneous equations models
    Luetkepohl, Helmut
    Milunovich, George
    Yang, Minxian
    JOURNAL OF ECONOMETRICS, 2020, 218 (02) : 317 - 345
  • [33] Statistical inference for imperfect maintenance models with missing data
    Dijoux, Yann
    Fouladirad, Mitra
    Dinh Tuan Nguyen
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2016, 154 : 84 - 96
  • [34] Statistical inference of missing speech data in the ICA domain
    Rosca, Justinian
    Gerkmann, Timo
    Balcan, Doru-Cristian
    2006 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-13, 2006, : 5475 - 5478
  • [35] Empirical likelihood inference for estimating equation with missing data
    WANG XiuLi
    CHEN Fang
    LIN Lu
    Science China(Mathematics), 2013, 56 (06) : 1230 - 1242
  • [36] Prediction and Inference With Missing Data in Patient Alert Systems
    Storlie, Curtis B.
    Therneau, Terry M.
    Carter, Rickey E.
    Chia, Nicholas
    Bergquist, John R.
    Huddleston, Jeanne M.
    Romero-Brufau, Santiago
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (529) : 32 - 46
  • [37] Multicast-based loss inference with missing data
    Duffield, NG
    Horowitz, J
    Towsley, D
    Wei, W
    Friedman, T
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2002, 20 (04) : 700 - 713
  • [38] Exact two-sample inference with missing data
    Cheung, YK
    BIOMETRICS, 2005, 61 (02) : 524 - 531
  • [39] Inference for longitudinal data with nonignorable nonmonotone missing responses
    Sinha, Sanjoy K.
    Kaushal, Amit
    Xiao, Wenzhong
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 72 : 77 - 91
  • [40] Inference for domains under imputation for missing survey data
    Haziza, D
    Rao, JNK
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2005, 33 (02): : 149 - 161