Eliminating Skyrmion Hall Effect in Ferromagnetic Skyrmions

被引:2
|
作者
Zhang, Xudan [1 ,2 ]
Wan, Guolin [1 ,2 ]
Zhang, Jie [2 ]
Zhang, Yan-Fang [2 ]
Pan, Jinbo [1 ,2 ]
Du, Shixuan [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
基金
中国国家自然科学基金; 国家自然科学基金重大项目;
关键词
ferromagnetic skyrmions; topological charge number; Dzyaloshinskii-Moriya interaction; skyrmion Hall effect; intercalated two-dimensional structure; DYNAMICS;
D O I
10.1021/acs.nanolett.4c02060
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Skyrmion Hall effect (SkHE) remains an obstacle for the application of magnetic skyrmions. While methods have been established to cancel or compensate SkHE in artificial antiferromagnets and ferrimagnets, eliminating intrinsic SkHE in ferromagnets is still a big challenge. Here, we propose a strategy to eliminate SkHE by intercalating nonmagnetic elements into van der Waals bilayer ferromagnets featuring in-plane ferromagnetism. The in-plane magnetism, along with a delicate balance among exchange interactions, Dzyaloshinskii-Moriya interactions (DMI), and magnetocrystalline anisotropy, creates interlayer bimerons/quadmerons, whose polarity can be controlled by DMI. Opposite DMI in the upper and lower layers results in opposite polarity and topological charge number Q-locking of topological spin texture, therefore, eliminating the SkHE. By intercalating Sr (Ba) in bilayer VSe2, we identify ten topological magnetic structures with zero topological charge number. Furthermore, we present a phase diagram illustrating diverse magnetic configurations achievable within the bimagnetic atomic layer, offering valuable guidance for future investigations.
引用
收藏
页码:10796 / 10804
页数:9
相关论文
共 50 条
  • [41] Quantized topological Hall effect in skyrmion crystal
    Hamamoto, Keita
    Ezawa, Motohiko
    Nagaosa, Naoto
    PHYSICAL REVIEW B, 2015, 92 (11)
  • [42] Overcoming the speed limit in skyrmion racetrack devices by suppressing the skyrmion Hall effect
    Goebel, Boerge
    Mook, Alexander
    Henk, Juergen
    Mertig, Ingrid
    PHYSICAL REVIEW B, 2019, 99 (02)
  • [43] Commensuration effects on skyrmion Hall angle and drag for manipulation of skyrmions on two-dimensional periodic substrates
    Reichhardt, C.
    Reichhardt, C. J. O.
    PHYSICAL REVIEW B, 2022, 105 (21)
  • [44] THEORY OF FERROMAGNETIC HALL EFFECT
    CHRISTOP.V
    ANNALEN DER PHYSIK, 1969, 22 (5-6) : 219 - &
  • [45] FERROMAGNETIC HALL EFFECT OF GADOLINIUM
    MAROTTA, AS
    TAUER, KJ
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1963, 18 (02) : 310 - &
  • [46] THEORY OF THE FERROMAGNETIC HALL EFFECT
    GUREVICH, LE
    YASSIEVICH, IN
    SOVIET PHYSICS-SOLID STATE, 1964, 5 (09): : 1914 - 1918
  • [47] THEORY OF THE FERROMAGNETIC HALL EFFECT
    GUREVICH, LE
    YASSIEVICH, IN
    SOVIET PHYSICS-SOLID STATE, 1963, 4 (10): : 2091 - 2099
  • [48] HALL EFFECT IN FERROMAGNETIC MATERIALS
    PUGH, EM
    ROSTOKER, N
    REVIEWS OF MODERN PHYSICS, 1953, 25 (01) : 151 - 157
  • [49] On the Hall effect in ferromagnetic bodies
    Rudnitsky, V
    JOURNAL OF PHYSICS-USSR, 1939, 1 : 247 - 250
  • [50] Fractionally charged skyrmions in fractional quantum Hall effect
    Balram, Ajit C.
    Wurstbauer, U.
    Wojs, A.
    Pinczuk, A.
    Jain, J. K.
    NATURE COMMUNICATIONS, 2015, 6