Eliminating Skyrmion Hall Effect in Ferromagnetic Skyrmions

被引:2
|
作者
Zhang, Xudan [1 ,2 ]
Wan, Guolin [1 ,2 ]
Zhang, Jie [2 ]
Zhang, Yan-Fang [2 ]
Pan, Jinbo [1 ,2 ]
Du, Shixuan [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
基金
中国国家自然科学基金; 国家自然科学基金重大项目;
关键词
ferromagnetic skyrmions; topological charge number; Dzyaloshinskii-Moriya interaction; skyrmion Hall effect; intercalated two-dimensional structure; DYNAMICS;
D O I
10.1021/acs.nanolett.4c02060
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Skyrmion Hall effect (SkHE) remains an obstacle for the application of magnetic skyrmions. While methods have been established to cancel or compensate SkHE in artificial antiferromagnets and ferrimagnets, eliminating intrinsic SkHE in ferromagnets is still a big challenge. Here, we propose a strategy to eliminate SkHE by intercalating nonmagnetic elements into van der Waals bilayer ferromagnets featuring in-plane ferromagnetism. The in-plane magnetism, along with a delicate balance among exchange interactions, Dzyaloshinskii-Moriya interactions (DMI), and magnetocrystalline anisotropy, creates interlayer bimerons/quadmerons, whose polarity can be controlled by DMI. Opposite DMI in the upper and lower layers results in opposite polarity and topological charge number Q-locking of topological spin texture, therefore, eliminating the SkHE. By intercalating Sr (Ba) in bilayer VSe2, we identify ten topological magnetic structures with zero topological charge number. Furthermore, we present a phase diagram illustrating diverse magnetic configurations achievable within the bimagnetic atomic layer, offering valuable guidance for future investigations.
引用
收藏
页码:10796 / 10804
页数:9
相关论文
共 50 条
  • [21] Skyrmions in the fractional quantum hall effect
    Kamilla, RK
    Wu, XG
    Jain, JK
    SOLID STATE COMMUNICATIONS, 1996, 99 (04) : 289 - 293
  • [22] Stripe skyrmions and skyrmion crystals
    Wang, X. R.
    Hu, X. C.
    Wu, H. T.
    COMMUNICATIONS PHYSICS, 2021, 4 (01)
  • [23] Stripe skyrmions and skyrmion crystals
    X. R. Wang
    X. C. Hu
    H. T. Wu
    Communications Physics, 4
  • [24] The Quantum Hall effect, Skyrmions and anomalies
    Travesset, A
    TOWARD THE THEORY OF EVERYTHING: MRST '98, 1998, 452 : 134 - 143
  • [25] Direct observation of the skyrmion Hall effect
    Jiang, Wanjun
    Zhang, Xichao
    Yu, Guoqiang
    Zhang, Wei
    Wang, Xiao
    Jungfleisch, M. Benjamin
    Pearson, John E.
    Cheng, Xuemei
    Heinonen, Olle
    Wang, Kang L.
    Zhou, Yan
    Hoffmann, Axel
    te Velthuis, Suzanne G. E.
    NATURE PHYSICS, 2017, 13 (02) : 162 - 169
  • [26] Fundamentals and applications of the skyrmion Hall effect
    Yang, Sheng
    Zhao, Yuelei
    Zhang, Xichao
    Xing, Xiangjun
    Du, Haifeng
    Li, Xiaoguang
    Mochizuki, Masahito
    Xu, Xiaohong
    Akerman, Johan
    Zhou, Yan
    APPLIED PHYSICS REVIEWS, 2024, 11 (04):
  • [27] Plastic flow and the skyrmion Hall effect
    C. Reichhardt
    C. J. O. Reichhardt
    Nature Communications, 11
  • [28] Direct observation of the skyrmion Hall effect
    Jiang W.
    Zhang X.
    Yu G.
    Zhang W.
    Wang X.
    Benjamin Jungfleisch M.
    Pearson J.E.
    Cheng X.
    Heinonen O.
    Wang K.L.
    Zhou Y.
    Hoffmann A.
    Te Velthuis S.G.E.
    Nature Physics, 2017, 13 (2) : 162 - 169
  • [29] Plastic flow and the skyrmion Hall effect
    Reichhardt, C.
    Reichhardt, C. J. O.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [30] Skyrmion quantum spin Hall effect
    Chen, Tianqi
    Byrnes, Tim
    PHYSICAL REVIEW B, 2019, 99 (18)