A solution to the Erdős-Sárközy-Sós problem on asymptotic Sidon bases of order 3

被引:0
|
作者
Pilatte, Cedric [1 ]
机构
[1] Univ Oxford, Math Inst, Andrew Wiles Bldg, Oxford OX2 6GG, England
关键词
Sidon sets; additive bases; arithmetic of function fields; probabilistic method; SUM SETS;
D O I
10.1112/S0010437X24007140
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set $S\subset {\mathbb {N}}$ is a Sidon set if all pairwise sums $s_1+s_2$ (for $s_1, s_2\in S$, $s_1\leqslant s_2$) are distinct. A set $S\subset {\mathbb {N}}$ is an asymptotic basis of order 3 if every sufficiently large integer $n$ can be written as the sum of three elements of $S$. In 1993, Erd & odblac;s, S & aacute;rk & ouml;zy and S & oacute;s asked whether there exists a set $S$ with both properties. We answer this question in the affirmative. Our proof relies on a deep result of Sawin on the $\mathbb {F}_q[t]$-analogue of Montgomery's conjecture for convolutions of the von Mangoldt function.
引用
收藏
页码:1418 / 1432
页数:16
相关论文
共 50 条