For any fixed finite interval [a, b] on the real line, an arbitrary natural numberr and σ>0, we describe the extremal function to the problem\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\left\| {f^{(k)} } \right\|L_p \left[ {a,b} \right]^{ \to \sup } \left( {1 \leqslant k \leqslant r - 1, 1 \leqslant p< \infty } \right)$$
\end{document} over all functionsf ∈W∞r such that |f(r)(x)| ≤σ, |f(x)|≤1 on (−∞, ∞). Similarly, we solve the problem, raised by Paul Erdös, of characterizing the trigonometric polynomial of fixed uniform norm whose graph has maximal arc length over [a, b].