A solution to the Erdős-Sárközy-Sós problem on asymptotic Sidon bases of order 3

被引:0
|
作者
Pilatte, Cedric [1 ]
机构
[1] Univ Oxford, Math Inst, Andrew Wiles Bldg, Oxford OX2 6GG, England
关键词
Sidon sets; additive bases; arithmetic of function fields; probabilistic method; SUM SETS;
D O I
10.1112/S0010437X24007140
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set $S\subset {\mathbb {N}}$ is a Sidon set if all pairwise sums $s_1+s_2$ (for $s_1, s_2\in S$, $s_1\leqslant s_2$) are distinct. A set $S\subset {\mathbb {N}}$ is an asymptotic basis of order 3 if every sufficiently large integer $n$ can be written as the sum of three elements of $S$. In 1993, Erd & odblac;s, S & aacute;rk & ouml;zy and S & oacute;s asked whether there exists a set $S$ with both properties. We answer this question in the affirmative. Our proof relies on a deep result of Sawin on the $\mathbb {F}_q[t]$-analogue of Montgomery's conjecture for convolutions of the von Mangoldt function.
引用
收藏
页码:1418 / 1432
页数:16
相关论文
共 50 条
  • [1] A note on a problem of Erdős, Nathanson and Sárközy
    Ya-Li Li
    Periodica Mathematica Hungarica, 2022, 85 : 275 - 279
  • [2] On Erdős and Sárközy’s sequences with Property P
    Christian Elsholtz
    Stefan Planitzer
    Monatshefte für Mathematik, 2017, 182 : 565 - 575
  • [3] A Note on a Problem of Sárk?zy and Sós
    Min TANG
    Journal of Mathematical Research with Applications, 2022, 42 (03) : 243 - 246
  • [4] A new approach for the Brown-Erdős-Sós problem
    Shapira, Asaf
    Tyomkyn, Mykhaylo
    ISRAEL JOURNAL OF MATHEMATICS, 2025,
  • [5] A spectral Erdős-Sós theorem
    Cioabă, Sebastian
    Desai, Dheer Noal
    Tait, Michael
    arXiv, 2022,
  • [6] Bipartite Version of the Erd?s-Sós Conjecture
    Xinmin HOU
    Chenhui Lü
    JournalofMathematicalResearchwithApplications, 2019, 39 (03) : 249 - 253
  • [7] A N OTE ON THE ERDS-SS CONJECTURE
    周兵
    ActaMathematicaScientia, 1984, (03) : 287 - 289
  • [8] A NEW RESULT ON ERDS-SóS CONJECTURE
    王敏
    赵艳青
    李国君
    数学物理学报, 1997, (S1) : 125 - 131
  • [9] Multiplicative Bases and an Erdős Problem
    Péter Pál Pach
    Csaba Sándor
    Combinatorica, 2018, 38 : 1175 - 1203
  • [10] A problem of Erdős and Sós on 3-graphs
    Roman Glebov
    Daniel Král’
    Jan Volec
    Israel Journal of Mathematics, 2016, 211 : 349 - 366