DESIGN OPTIMISATION OF A PLANAR ELECTROMAGNETIC ENERGY HARVESTER SUITABLE FOR LOW FREQUENCY VIBRATIONS

被引:0
|
作者
Ghafoor, Nouman [1 ]
Punch, Jeff [1 ]
Nico, Valeria [1 ]
机构
[1] Univ Limerick, CONNECT, Stokes Labs, Bernal Inst, Limerick, Ireland
基金
爱尔兰科学基金会;
关键词
GENERATOR;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Nowadays, most of the wireless sensor nodes (WSNs) used in Internet of Things (IoT) applications are powered by batteries. Despite the convenience of battery usage, the need for frequent battery replacement contributes to both direct and indirect environmental pollution. Vibrational energy harvesting using electromagnetic vibrational energy harvesters (EM-VEHs) is a more sustainable alternative to batteries as it harnesses the kinetic energy from ambient vibrations. Usually, the form factors of these devices render them difficult to integrate with printed circuit board and energy storage technologies since coils and magnets are generally arranged in a cylindrical form factor. Arranging coils and magnets in a planar configuration can result in a more compact device and improved integration. In this paper, an innovative planar EM-VEH design is proposed for harvesting kinetic energy from low frequency (10 Hz to 20 Hz), in-plane vibrations. The structure comprises three fixed-free beams, each of which is fixed on one side to the housing of the harvester while their free ends are attached to a single mass that acts as a magnet holder. Compared to previous studies where the beams are straight (90 degrees to the mass and to the fixed ends), the proposed fixed-free beams form an angle (86 degrees) to the mass and at the fixed end. Coils can be placed on top and bottom of the magnets or, in case of a Halbach array, coils can be placed on top or bottom of the magnets. In-plane excitations induce oscillations of the beams in the in-plane direction and, hence, relative movement of magnets and coils. Finite element analysis (FEA) using the stress and frequency analysis modules in SolidWorks was carried out to investigate and optimise different geometrical parameters of the design in order to increase the output power for low amplitude (up to 0.5 g, g = 9.81 m/s(2)) and low frequency (up to 20 Hz) vibrations. In particular, geometrical dimensions of the beams are optimised in terms of: (1) stress at the fixed end of the beam; (2) vertical deflection of the mass at free end; and (3) the movement of the magnet holder. The FEA results show a resonant frequency of 16.8 Hz, and relative displacements in x-axis of coil and magnet of 4.3 mm, 6.5 mm, 8.7mm and 10.8 mm at acceleration levels of 0.2 g, 0.3 g, 0.4 g, and 0.5 g, respectively.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Frequency Tuning of a Nonlinear Electromagnetic Energy Harvester
    Xie, Longhan
    Du, Ruxu
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2014, 136 (01):
  • [42] An Electromagnetic Frequency Increased Vibration Energy Harvester
    Ashraf, Khalid
    Khir, Mohd Haris Md
    Dennis, John Ojur
    MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 4231 - +
  • [43] A Novel Frequency Tuning Design for Vibration-Driven Electromagnetic Energy Harvester
    Lee, Byung-Chul
    Chung, Gwiy-Sang
    2015 IEEE SENSORS, 2015, : 386 - 389
  • [45] Design and development of a rotational energy harvester for ultralow frequency vibrations and irregular human motions
    Fan, Kangqi
    Qu, Hengheng
    Wu, Yipeng
    Wen, Tao
    Wang, Fei
    RENEWABLE ENERGY, 2020, 156 : 1028 - 1039
  • [46] A Novel Bird-Shape Broadband Piezoelectric Energy Harvester for Low Frequency Vibrations
    Yu, Han
    Zhang, Xiaofan
    Shan, Xiaobiao
    Hu, Liangxing
    Zhang, Xingxu
    Hou, Chengwei
    Xie, Tao
    MICROMACHINES, 2023, 14 (02)
  • [47] Low frequency driven electromagnetic energy harvester for self-powered system
    Lee, Byung-Chul
    Rahman, Md Ataur
    Hyun, Seung-Ho
    Chung, Gwiy-Sang
    SMART MATERIALS AND STRUCTURES, 2012, 21 (12)
  • [48] An electromagnetic vibration energy harvester with compact flexure guide for low frequency applications
    Wang, Lujie
    Liu, Tinghao
    Hao, Guangbo
    Chitta, Saha
    Liu, Lei
    Ye, Tincong
    Zhang, Zhengmin
    Wang, Ningning
    SMART MATERIALS AND STRUCTURES, 2024, 33 (01)
  • [49] Design of a piezoelectric–electromagnetic hybrid vibration energy harvester operating under ultra-low frequency excitation
    Fang Song
    Yuzhong Xiong
    Microsystem Technologies, 2022, 28 : 1785 - 1795
  • [50] Diamagnetic-levitation-based Electromagnetic Energy Harvester for Ultralow-frequency Vibrations and Human Motions
    Zhang, Kun
    Zhang, Bo
    Feng, Wei
    Liu, Zongyao
    Shen, Huipeng
    Liu, Baoguo
    SENSORS AND MATERIALS, 2023, 35 (01) : 25 - 38