Design of a piezoelectric–electromagnetic hybrid vibration energy harvester operating under ultra-low frequency excitation

被引:0
|
作者
Fang Song
Yuzhong Xiong
机构
[1] Shanghai University of Engineering Science,Engineering Training Center
[2] Shanghai University of Engineering Science,School of Mechanical and Automotive Engineering
[3] Shanghai Awinic Technology Co.,undefined
[4] Ltd.,undefined
来源
Microsystem Technologies | 2022年 / 28卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we proposed a novel piezoelectric-electromagnetic hybrid vibration energy harvester (HVEH). The HVEH has a unique structure, which enables it to work in an ultra-low frequency environment. An amplification structure amplifies the input displacement, increasing the displacement distance of the magnets. The motion of the magnets causes the frequency up-conversion of the piezoelectric cantilever beam. As the magnets move back and forth, the piezoelectric vibration energy harvester (PVEH) generates a stable output energy. A closed magnetic circuit is designed for electromagnetic vibration energy harvester (EVEH) with a pair of magnets and a soft magnetic core. The pair of magnets with opposite polarities changes the direction of magnetic flux in the coil by 180°, resulting the EVEH to harvest more energy. The combination of piezoelectric and electromagnetic energy harvesters makes the energy harvester obtain higher output energy. The experimental results show that, in the cycle experiments with a frequency of 5 Hz, the maximum peak-to-peak open-circuit voltage of the PVEH and the EVEH is 40.39 V and 36.87 V, respectively. The optimal load resistance and the maximum output power of the PVEH are 398.7 kΩ and 87.9 μW, while the EVEH’s are 3.2 kΩ and 2.173 mW, respectively. In addition, the charging characteristics of the HVEH through a 3300 uF capacitor indicated that the voltage growth of the HVEH is faster than that of the single energy harvester at the same time. The experimental results demonstrate great potential of the proposed energy harvester in various applications.
引用
收藏
页码:1785 / 1795
页数:10
相关论文
共 50 条
  • [1] Design of a piezoelectric-electromagnetic hybrid vibration energy harvester operating under ultra-low frequency excitation
    Song, Fang
    Xiong, Yuzhong
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2022, 28 (08): : 1785 - 1795
  • [2] A Rotational Electromagnetic Energy Harvester for The Ultra-low Frequency Vibration
    Ma, Xinyu
    Tang, Xingyu
    Zhang, Ziyue
    Luo, Anxin
    Wang, Fei
    20TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2021), 2021, : 12 - 15
  • [3] Prototype of energy harvester designed for ultra-low excitation frequency
    Unruan, Muangjai
    Unruan, Sujitra
    Pisitpipathsin, Nuttapon
    Inkong, Yutthapong
    INTEGRATED FERROELECTRICS, 2016, 175 (01) : 165 - 173
  • [4] A piezoelectric-electromagnetic hybrid energy harvester for low-frequency impact vibration
    Fang, Jiwen
    Hu, Bing
    Jiang, Mingwei
    Li, Chong
    Lv, Mingming
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2025, 614
  • [5] High Performance Hybrid Piezoelectric-Electromagnetic Energy Harvester for Scavenging Energy From Low-Frequency Vibration Excitation
    Yang, Yun
    Cai, Tingting
    Xue, Shuping
    Song, Xiaoguang
    Cui, Xinai
    IEEE ACCESS, 2020, 8 : 206503 - 206513
  • [6] An ultra-low frequency vibration energy harvester with zigzag piezoelectric spring actuated by rolling ball
    Shi, Ge
    Peng, Yansheng
    Tong, Dike
    Chang, Jian
    Li, Qing
    Wang, Xiudeng
    Xia, Huakang
    Ye, Yidie
    ENERGY CONVERSION AND MANAGEMENT, 2021, 243
  • [7] Development of an electromagnetic energy harvester for ultra-low frequency pitch vibration of unmanned marine devices
    Wang, Tao
    Lv, Haobin
    Wang, Xin
    APPLIED ENERGY, 2024, 353
  • [8] Hybrid electromagnetic and piezoelectric vibration energy harvester with Gaussian white noise excitation
    Foupouapouognigni, O.
    Buckjohn, C. Nono Dueyou
    Siewe, M. Siewe
    Tchawoua, C.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 509 : 346 - 360
  • [9] A low-frequency piezoelectric-electromagnetic-triboelectric hybrid broadband vibration energy harvester
    He, Xianming
    Wen, Quan
    Sun, Yafeng
    Wen, Zhiyu
    NANO ENERGY, 2017, 40 : 300 - 307
  • [10] A HIGH-PERFORMANCE PIEZOELECTRIC VIBRATION ENERGY HARVESTER WITH ULTRA-LOW ACCELERATION
    Wang, Fayang
    Wu, Pengfan
    Cui, Endian
    Ji, Zhenfeng
    Li, Jizhen
    Mu, Xiaojing
    2024 IEEE 37TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, MEMS, 2024, : 753 - 756