Slot-guided Volumetric Object Radiance Fields

被引:0
|
作者
Qi, Di [1 ]
Yang, Tong [1 ]
Zhang, Xiangyu [1 ]
机构
[1] MEGVII Technol Inc, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel framework for 3D object-centric representation learning. Our approach effectively decomposes complex scenes into individual objects from a single image in an unsupervised fashion. This method, called slot-guided Volumetric Object Radiance Fields (sVORF), composes volumetric object radiance fields with object slots as a guidance to implement unsupervised 3D scene decomposition. Specifically, sVORF obtains object slots from a single image via a transformer module, maps these slots to volumetric object radiance fields with a hypernetwork and composes object radiance fields with the guidance of object slots at a 3D location. Moreover, sVORF significantly reduces memory requirement due to small-sized pixel rendering during training. We demonstrate the effectiveness of our approach by showing top results in scene decomposition and generation tasks of complex synthetic datasets (e.g., Room-Diverse). Furthermore, we also confirm the potential of sVORF to segment objects in real-world scenes (e.g., the LLFF dataset). We hope our approach can provide preliminary understanding of the physical world and help ease future research in 3D object-centric representation learning.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Depth-Guided Optimization of Neural Radiance Fields for Indoor Multi-View Stereo
    Wei, Yi
    Liu, Shaohui
    Zhou, Jie
    Lu, Jiwen
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (09) : 10835 - 10849
  • [42] DeRF: Decomposed Radiance Fields
    Rebain, Daniel
    Jiang, Wei
    Yazdani, Soroosh
    Li, Ke
    Yi, Kwang Moo
    Tagliasacchi, Andrea
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 14148 - 14156
  • [43] Editing Conditional Radiance Fields
    Liu, Steven
    Zhang, Xiuming
    Zhang, Zhoutong
    Zhang, Richard
    Zhu, Jun-Yan
    Russell, Bryan
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 5753 - 5763
  • [44] Neural Transmitted Radiance Fields
    Zhu, Chengxuan
    Wan, Renjie
    Shi, Boxin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [45] Reconstructionless Airborne Radiance Fields
    Praschl, Christoph
    Boess, Leopold
    Schedl, David C.
    PROCEEDINGS OF THE SIGGRAPH 2024 POSTERS, 2024,
  • [46] Deforming Radiance Fields with Cages
    Xu, Tianhan
    Harada, Tatsuya
    COMPUTER VISION - ECCV 2022, PT XXXIII, 2022, 13693 : 159 - 175
  • [47] ARF: Artistic Radiance Fields
    Zhang, Kai
    Kolkin, Nick
    Bi, Sai
    Luan, Fujun
    Xu, Zexiang
    Shechtman, Eli
    Snavely, Noah
    COMPUTER VISION, ECCV 2022, PT XXXI, 2022, 13691 : 717 - 733
  • [48] ThermalNeRF: Thermal Radiance Fields
    Lin, Yvette Y.
    Pan, Xin-Yi
    Fridovich-Keil, Sara
    Wetzstein, Gordon
    2024 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL PHOTOGRAPHY, ICCP 2024, 2024,
  • [49] TensoRF: Tensorial Radiance Fields
    Chen, Anpei
    Xu, Zexiang
    Geiger, Andreas
    Yu, Jingyi
    Su, Hao
    COMPUTER VISION - ECCV 2022, PT XXXII, 2022, 13692 : 333 - 350
  • [50] Radiance function estimation for object classification
    Robles-Kelly, A
    Hancock, ER
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, 2004, 3287 : 67 - 75