Slot-guided Volumetric Object Radiance Fields

被引:0
|
作者
Qi, Di [1 ]
Yang, Tong [1 ]
Zhang, Xiangyu [1 ]
机构
[1] MEGVII Technol Inc, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel framework for 3D object-centric representation learning. Our approach effectively decomposes complex scenes into individual objects from a single image in an unsupervised fashion. This method, called slot-guided Volumetric Object Radiance Fields (sVORF), composes volumetric object radiance fields with object slots as a guidance to implement unsupervised 3D scene decomposition. Specifically, sVORF obtains object slots from a single image via a transformer module, maps these slots to volumetric object radiance fields with a hypernetwork and composes object radiance fields with the guidance of object slots at a 3D location. Moreover, sVORF significantly reduces memory requirement due to small-sized pixel rendering during training. We demonstrate the effectiveness of our approach by showing top results in scene decomposition and generation tasks of complex synthetic datasets (e.g., Room-Diverse). Furthermore, we also confirm the potential of sVORF to segment objects in real-world scenes (e.g., the LLFF dataset). We hope our approach can provide preliminary understanding of the physical world and help ease future research in 3D object-centric representation learning.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] DirectVoxGO plus plus : Grid-based fast object reconstruction using radiance fields
    Perazzo, Daniel
    Lima, Joao Paulo
    Velho, Luiz
    Teichrieb, Veronica
    COMPUTERS & GRAPHICS-UK, 2023, 114 : 96 - 104
  • [32] HOSNeRF: Dynamic Human-Object-Scene Neural Radiance Fields from a Single Video
    Liu, Jia-Wei
    Cao, Yan-Pei
    Yang, Tianyuan
    Xu, Zhongcong
    Keppo, Jussi
    Shan, Ying
    Qie, Xiaohu
    Shou, Mike Zheng
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 18437 - 18448
  • [33] Regularizing Dynamic Radiance Fields with Kinematic Fields
    Im, Woobin
    Cha, Geonho
    Lee, Sebin
    Lee, Jumin
    Seon, Juhyeong
    Wee, Dongyoon
    Yoon, Sung-Eui
    COMPUTER VISION - ECCV 2024, PT XXXIX, 2025, 15097 : 312 - 328
  • [34] The beam radiance estimate for volumetric photon mapping
    Jarosz, Wojciech
    Zwicker, Matthias
    Jensen, Henrik Wann
    COMPUTER GRAPHICS FORUM, 2008, 27 (02) : 557 - 566
  • [35] Robust Dynamic Radiance Fields
    Liu, Yu-Lun
    Gao, Chen
    Meuleman, Andreas
    Tseng, Hung-Yu
    Saraf, Ayush
    Kim, Changil
    Chuang, Yung-Yu
    Kopf, Johannes
    Huang, Jia-Bin
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 13 - 23
  • [36] SG-NeRF: Semantic-guided Point-based Neural Radiance Fields
    Qu, Yansong
    Wang, Yuze
    Qi, Yue
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 570 - 575
  • [37] Interactive Segmentation of Radiance Fields
    Goel, Rahul
    Sirikonda, Dhawal
    Saini, Saurabh
    Narayanan, P. J.
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 4201 - 4211
  • [38] Colorizing Monochromatic Radiance Fields
    Cheng, Yean
    Wan, Renjie
    Weng, Shuchen
    Zhu, Chengxuan
    Chang, Yakun
    Shi, Boxin
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 2, 2024, : 1317 - 1325
  • [39] SlimmeRF: Slimmable Radiance Fields
    Yuan, Shiran
    Zhao, Hao
    2024 INTERNATIONAL CONFERENCE IN 3D VISION, 3DV 2024, 2024, : 64 - 74
  • [40] Enhancing View Synthesis with Depth-Guided Neural Radiance Fields and Improved Depth Completion
    Wang, Bojun
    Zhang, Danhong
    Su, Yixin
    Zhang, Huajun
    SENSORS, 2024, 24 (06)