COLENGTH ONE DEFORMATION RINGS

被引:0
|
作者
Le, Daniel [1 ]
Hung, Bao v. le [2 ]
Morra, Stefano [3 ]
Park, Chol [4 ]
Qian, Zicheng [5 ]
机构
[1] Purdue Univ, Dept Math, 150 N Univ St, WestLafayette, Indiana, PA 47907 USA
[2] Northwestern Univ, Dept Math, 2033 Sheridan Rd, Evanston, IL 60208 USA
[3] Univ Paris 08, Univ Sorbonne Paris Nord, Lab Anal Geometrie & Applicat, LAGA,CNRS,UMR 7539, F-93430 Villetaneuse, France
[4] Ulsan Natl Inst Sci & Technol, Dept Math Sci, UNIST Gil 50, Ulsan 44919, South Korea
[5] Morningside Ctr Math, 55 Zhongguancun East Rd, Beijing 100190, Peoples R China
基金
美国国家科学基金会;
关键词
LOCAL-GLOBAL COMPATIBILITY; MOD P COHOMOLOGY; WEIGHT;
D O I
10.1090/tran/9191
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K/Qp Q p be a finite unramified extension, rho : Gal(Qp/K) Q p /K ) -> GLn(Fp) n ( F p ) a continuous representation, and tau a tame inertial type of dimension n . We explicitly determine, under mild regularity conditions on tau , the potentially crystalline deformation ring R eta,tau rho in parallel Hodge-Tate weights eta = (n n - 1, , <middle dot> <middle dot> <middle dot>,1, 1 , 0) and inertial type tau when the shape of rho with respect to tau has colength at most one. This has application to the modularity of a class of shadow weights in the weight part of Serre's conjecture. Along the way we make unconditional the local -global compatibility results of Park and Qian [Me<acute accent>m. Soc. Math. Fr. (N.S.) 173 (2022), pp. vi+150].
引用
收藏
页码:5749 / 5786
页数:38
相关论文
共 50 条
  • [21] Bounds on colength and maximal multiplicity sequences
    Berele, Allan
    JOURNAL OF ALGEBRA, 2010, 324 (12) : 3262 - 3275
  • [22] Singularities of ordinary deformation rings
    Snowden, Andrew
    MATHEMATISCHE ZEITSCHRIFT, 2018, 288 (3-4) : 759 - 781
  • [23] INVERSE PROBLEMS FOR DEFORMATION RINGS
    Bleher, Frauke M.
    Chinburg, Ted
    De Smit, Bart
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (11) : 6149 - 6165
  • [24] Universal deformation rings and fusion
    Meyer, David C.
    JOURNAL OF ALGEBRA, 2014, 417 : 275 - 289
  • [25] Deformation phenomen and elastic rings
    Grammel, R
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1927, 7 : 198 - 210
  • [26] Colength of varieties of linear algebras
    M. V. Zaitsev
    S. P. Mishchenko
    Mathematical Notes, 2006, 79 : 511 - 517
  • [27] DEFORMATION OF RINGS AND ALGEBRAS IV
    GERSTENHABER, M
    ANNALS OF MATHEMATICS, 1974, 99 (02) : 257 - 276
  • [28] Derived Galois deformation rings
    Galatius, S.
    Venkatesh, A.
    ADVANCES IN MATHEMATICS, 2018, 327 : 470 - 623
  • [29] Finiteness of unramified deformation rings
    Allen, Patrick B.
    Calegari, Frank
    ALGEBRA & NUMBER THEORY, 2014, 8 (09) : 2263 - 2272
  • [30] Deformation rings and parabolic induction
    Hauseux, Julien
    Schmidt, Tobias
    Sorensen, Claus
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2018, 30 (02): : 695 - 727