INVERSE PROBLEMS FOR DEFORMATION RINGS

被引:6
|
作者
Bleher, Frauke M. [1 ]
Chinburg, Ted [2 ]
De Smit, Bart [3 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[3] Leiden Univ, Math Inst, NL-2300 RA Leiden, Netherlands
关键词
Universal deformation rings; complete intersections; inverse problems; NEED;
D O I
10.1090/S0002-9947-2013-05848-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let W be a complete Noetherian local commutative ring with residue field k of positive characteristic p. We study the inverse problem for the universal deformation rings R-W(Gamma, V) relative to W of finite dimensional representations V of a profinite group Gamma over k. We show that for all p and n >= 1, the ring W[[t]]/(p(n)t, t(2)) arises as a universal deformation ring. This ring is not a complete intersection if p(n)W not equal {0}, so we obtain an answer to a question of M. Flach in all characteristics. We also study the 'inverse inverse problem' for the ring W[[t]]/(p(n)t, t(2)); this is to determine all pairs (Gamma, V) such that R-W(Gamma, V) is isomorphic to this ring.
引用
收藏
页码:6149 / 6165
页数:17
相关论文
共 50 条