An efficient technique based on barycentric interpolation collocation method for the time fractional Allen-Cahn equation

被引:0
|
作者
Huang, Rong [1 ]
Weng, Zhifeng [1 ]
机构
[1] Huaqiao Univ, Fujian Prov Univ Key Lab Computat Sci, Sch Math Sci, Quanzhou 362021, Peoples R China
来源
SCIENCEASIA | 2024年 / 50卷 / 01期
关键词
time fractional Allen-Cahn equation; barycentric interpolation collocation; L1; scheme; fast evaluation; IMAGE SEGMENTATION; NUMERICAL-ANALYSIS; APPROXIMATION; SCHEME;
D O I
10.2306/scienceasia1513-1874.2024.001
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper aims to numerically study two well-known difference formulas based on barycentric interpolation collocation method for the time fractional Allen-Cahn equation. The L1 formula and the fast convolution algorithm are used to approximate the Caputo time fractional derivative respectively, and the barycentric interpolation collocation method is applied to discretize the spatial derivative. Moreover, consistency analysis of semi-discretized in space and fully discretized nonlinear scheme is demonstrated. The nonlinear term is treated by explicit scheme to derive the discrete linear equations. Numerical experiments are presented to validate the theoretical results and show the configurations of phase field evolution.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Accurate and efficient algorithms with unconditional energy stability for the time fractional Cahn-Hilliard and Allen-Cahn equations
    Liu, Zhengguang
    Li, Xiaoli
    Huang, Jian
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (03) : 2613 - 2633
  • [42] The exact solutions of the stochastic fractional-space Allen-Cahn equation
    Albosaily, Sahar
    Mohammed, Wael W.
    Hamza, Amjad E.
    El-Morshedy, Mahmoud
    Ahmad, Hijaz
    OPEN PHYSICS, 2022, 20 (01): : 23 - 29
  • [43] A simple and efficient numerical method for the Allen-Cahn equation on effective symmetric triangular meshes
    Hwang, Youngjin
    Ham, Seokjun
    Lee, Chaeyoung
    Lee, Gyeonggyu
    Kang, Seungyoon
    Kim, Junseok
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (08): : 4557 - 4578
  • [44] An efficient nonconforming finite element two-grid method for Allen-Cahn equation
    Shi Dongyang
    Liu Qian
    APPLIED MATHEMATICS LETTERS, 2019, 98 : 374 - 380
  • [45] Lagrange multiplier structure-preserving algorithm for time-fractional Allen-Cahn equation
    Zheng, Zhoushun
    Ni, Xinyue
    He, Jilong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 164 : 67 - 78
  • [46] An Adaptive Time-Stepping Algorithm for the Allen-Cahn Equation
    Lee, Chaeyoung
    Park, Jintae
    Kwak, Soobin
    Kim, Sangkwon
    Choi, Yongho
    Ham, Seokjun
    Kim, Junseok
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [47] Certified reduced order method for the parametrized Allen-Cahn equation
    Wu, Liang
    Azaieza, Mejdi
    Rebollo, Tomas Chacon
    Xu, Chuanju
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 134 : 167 - 180
  • [48] An explicit stable finite difference method for the Allen-Cahn equation
    Lee, Chaeyoung
    Choi, Yongho
    Kim, Junseok
    APPLIED NUMERICAL MATHEMATICS, 2022, 182 : 87 - 99
  • [49] A finite element method for Allen-Cahn equation on deforming surface
    Olshanskii, Maxim
    Xu, Xianmin
    Yushutin, Vladimir
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 90 : 148 - 158
  • [50] Superconvergence analysis of nonconforming finite element method for two-dimensional time-fractional Allen-Cahn equation
    Wei, Yabing
    Zhao, Yanmin
    Wang, Fenling
    Tang, Yifa
    APPLIED MATHEMATICS LETTERS, 2023, 140