An efficient technique based on barycentric interpolation collocation method for the time fractional Allen-Cahn equation

被引:0
|
作者
Huang, Rong [1 ]
Weng, Zhifeng [1 ]
机构
[1] Huaqiao Univ, Fujian Prov Univ Key Lab Computat Sci, Sch Math Sci, Quanzhou 362021, Peoples R China
来源
SCIENCEASIA | 2024年 / 50卷 / 01期
关键词
time fractional Allen-Cahn equation; barycentric interpolation collocation; L1; scheme; fast evaluation; IMAGE SEGMENTATION; NUMERICAL-ANALYSIS; APPROXIMATION; SCHEME;
D O I
10.2306/scienceasia1513-1874.2024.001
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper aims to numerically study two well-known difference formulas based on barycentric interpolation collocation method for the time fractional Allen-Cahn equation. The L1 formula and the fast convolution algorithm are used to approximate the Caputo time fractional derivative respectively, and the barycentric interpolation collocation method is applied to discretize the spatial derivative. Moreover, consistency analysis of semi-discretized in space and fully discretized nonlinear scheme is demonstrated. The nonlinear term is treated by explicit scheme to derive the discrete linear equations. Numerical experiments are presented to validate the theoretical results and show the configurations of phase field evolution.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Highly efficient schemes for time-fractional Allen-Cahn equation using extended SAV approach
    Hou, Dianming
    Zhu, Hongyi
    Xu, Chuanju
    NUMERICAL ALGORITHMS, 2021, 88 (03) : 1077 - 1108
  • [22] Efficient numerical scheme for solving the Allen-Cahn equation
    Shah, Ahdullah
    Sabir, Muhammad
    Qasim, Muhammad
    Bastian, Peter
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (05) : 1820 - 1833
  • [23] SADDLE-SHAPED SOLUTIONS FOR THE FRACTIONAL ALLEN-CAHN EQUATION
    Cinti, Eleonora
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (03): : 441 - 463
  • [24] Traveling wave solutions of Allen-Cahn equation with a fractional Laplacian
    Gui, Changfeng
    Zhao, Mingfeng
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (04): : 785 - 812
  • [25] Front-type solutions of fractional Allen-Cahn equation
    Nec, Y.
    Nepomnyashchy, A. A.
    Golovin, A. A.
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (24) : 3237 - 3251
  • [26] Collocation-based numerical simulation of fractional order Allen–Cahn equation
    Renu Choudhary
    Devendra Kumar
    Journal of Mathematical Chemistry, 2024, 62 : 145 - 168
  • [27] Fast and efficient numerical method for solving the Allen-Cahn equation on the cubic surface
    Hwang, Youngjin
    Yang, Junxiang
    Lee, Gyeongyu
    Ham, Seokjun
    Kang, Seungyoon
    Kwak, Soobin
    Kim, Junseok
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 215 : 338 - 356
  • [28] An efficient and explicit local image inpainting method using the Allen-Cahn equation
    Wang, Jian
    Han, Ziwei
    Kim, Junseok
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (02):
  • [29] On the short time asymptotic of the stochastic Allen-Cahn equation
    Weber, Hendrik
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (04): : 965 - 975
  • [30] Strong convergence rates for the approximation of a stochastic time-fractional Allen-Cahn equation
    Al-Maskari, Mariam
    Karaa, Samir
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 119