Enhancing Video Anomaly Detection Using a Transformer Spatiotemporal Attention Unsupervised Framework for Large Datasets

被引:2
|
作者
Habeb, Mohamed H. [1 ]
Salama, May [1 ]
Elrefaei, Lamiaa A. [1 ]
机构
[1] Benha Univ, Fac Engn Shoubra, Elect Engn Dept, Cairo 11629, Egypt
关键词
video anomaly detection; unsupervised learning; spatiotemporal modeling; large datasets; LOCALIZATION; RECOGNITION; HISTOGRAMS; EXTRACTION;
D O I
10.3390/a17070286
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work introduces an unsupervised framework for video anomaly detection, leveraging a hybrid deep learning model that combines a vision transformer (ViT) with a convolutional spatiotemporal relationship (STR) attention block. The proposed model addresses the challenges of anomaly detection in video surveillance by capturing both local and global relationships within video frames, a task that traditional convolutional neural networks (CNNs) often struggle with due to their localized field of view. We have utilized a pre-trained ViT as an encoder for feature extraction, which is then processed by the STR attention block to enhance the detection of spatiotemporal relationships among objects in videos. The novelty of this work is utilizing the ViT with the STR attention to detect video anomalies effectively in large and heterogeneous datasets, an important thing given the diverse environments and scenarios encountered in real-world surveillance. The framework was evaluated on three benchmark datasets, i.e., the UCSD-Ped2, CHUCK Avenue, and ShanghaiTech. This demonstrates the model's superior performance in detecting anomalies compared to state-of-the-art methods, showcasing its potential to significantly enhance automated video surveillance systems by achieving area under the receiver operating characteristic curve (AUC ROC) values of 95.6, 86.8, and 82.1. To show the effectiveness of the proposed framework in detecting anomalies in extra-large datasets, we trained the model on a subset of the huge contemporary CHAD dataset that contains over 1 million frames, achieving AUC ROC values of 71.8 and 64.2 for CHAD-Cam 1 and CHAD-Cam 2, respectively, which outperforms the state-of-the-art techniques.
引用
收藏
页数:31
相关论文
共 50 条
  • [31] A Survey of Video Datasets for Anomaly Detection in Automated Surveillance
    Patil, N.
    Biswas, Prabir Kumar
    2016 SIXTH INTERNATIONAL SYMPOSIUM ON EMBEDDED COMPUTING AND SYSTEM DESIGN (ISED 2016), 2016, : 43 - 48
  • [32] A Video Saliency Detection Framework Using Spatiotemporal Consistency Optimization
    Zheng, Yunfei
    Zhang, Xiongwei
    Cao, Tieyong
    Bao, Lei
    Hu, Yonggang
    Wang, Yong
    PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 523 - 528
  • [33] Generative Cooperative Learning for Unsupervised Video Anomaly Detection
    Zaheer, M. Zaigham
    Mahmood, Arif
    Khan, M. Haris
    Segu, Mattia
    Yu, Fisher
    Lee, Seung-Ik
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 14724 - 14734
  • [34] A Causal Inference Look at Unsupervised Video Anomaly Detection
    Lin, Xiangru
    Chen, Yuyang
    Li, Guanbin
    Yu, Yizhou
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 1620 - 1629
  • [35] Unsupervised Video Anomaly Detection in Traffic and Crowded Scenes
    Hashimoto, Satoshi
    Moro, Alessandro
    Kudo, Kenichi
    Takahashi, Takayuki
    Umeda, Kazunori
    2022 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII 2022), 2022, : 870 - 876
  • [36] EXPLORING DIFFUSION MODELS FOR UNSUPERVISED VIDEO ANOMALY DETECTION
    Tur, Anil Osman
    Dall'Asen, Nicola
    Beyan, Cigdem
    Ricci, Elisa
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2540 - 2544
  • [37] Feature Reconstruction With Disruption for Unsupervised Video Anomaly Detection
    Tao, Chenchen
    Wang, Chong
    Lin, Sunqi
    Cai, Suhang
    Li, Di
    Qian, Jiangbo
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 10160 - 10173
  • [38] Consistency-constrained unsupervised video anomaly detection framework based on Co-teaching
    Shao, Wenhao
    Rajapaksha, Praboda
    Crespi, Noel
    Zhao, Xuechen
    Wang, Mengzhu
    Yin, Nan
    Liu, Xinwang
    Luo, Zhigang
    NEUROCOMPUTING, 2024, 610
  • [39] Unsupervised Transformer-Based Anomaly Detection in ECG Signals
    Alamr, Abrar
    Artoli, Abdelmonim
    ALGORITHMS, 2023, 16 (03)
  • [40] RESIST: Robust Transformer for Unsupervised Time Series Anomaly Detection
    Najari, Naji
    Berlemont, Samuel
    Lefebvre, Gregoire
    Duffner, Stefan
    Garcia, Christophe
    ADVANCED ANALYTICS AND LEARNING ON TEMPORAL DATA, AALTD 2022, 2023, 13812 : 66 - 82