A Video Saliency Detection Framework Using Spatiotemporal Consistency Optimization

被引:0
|
作者
Zheng, Yunfei [1 ,2 ]
Zhang, Xiongwei [3 ]
Cao, Tieyong [3 ]
Bao, Lei [2 ]
Hu, Yonggang [3 ]
Wang, Yong [2 ]
机构
[1] PLA Univ Sci & Technol, Lab Intelligence Informat Proc, Nanjing, Jiangsu, Peoples R China
[2] Army Officer Acad PLA, Hefei, Peoples R China
[3] PLA Univ Sci & Technol, Nanjing, Jiangsu, Peoples R China
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Labeling salient region accurately in video with cluttered background and complex motion condition is still a challenging work. In this paper, an efficient and low complexity spatiotemporal consistency optimization model, and a video saliency framework using the spatiotemporal consistency are proposed. We derive the superpixel-level spatial and temporal saliency value by integrating three spatial saliency features and two temporal saliency features respectively. After optimizing the spatial and temporal saliency map respectively using spatiotemporal consistency optimization model, the spatial and temporal saliency map are fused and enhanced by spatiotemporal consistency optimization. Finally, pixel-level salient regions are generated by graph-cuts algorithm. Experimental results on two challenging benchmark video datasets demonstrate the superiority and robustness of proposed spatiotemporal consistency optimization model and video saliency detection framework over state-of-the-art methods.
引用
收藏
页码:523 / 528
页数:6
相关论文
共 50 条
  • [1] A Video Salient Region Detection Framework Using Spatiotemporal Consistency Optimization
    Zheng, Yunfei
    Zhang, Xiongwei
    Bao, Lei
    Cao, Tieyong
    Hu, Yonggang
    Sun, Meng
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2017, E100A (02): : 688 - 701
  • [2] Video Object Extraction Based on Spatiotemporal Consistency Saliency Detection
    Guo, Yingchun
    Li, Zhuo
    Liu, Yi
    Yan, Gang
    Yu, Ming
    [J]. IEEE ACCESS, 2018, 6 : 35171 - 35181
  • [3] Video Saliency Detection Using Spatiotemporal Cues
    Chen, Yu
    Xiao, Jing
    Hu, Liuyi
    Chen, Dan
    Wang, Zhongyuan
    Li, Dengshi
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (09): : 2201 - 2208
  • [4] Spatiotemporal Saliency Detection Based on Maximum Consistency Superpixels Merging for Video Analysis
    Zhang, Jianhua
    Chen, Jingbo
    Wang, Qichao
    Chen, Shengyong
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (01) : 606 - 614
  • [5] A spatiotemporal model for video saliency detection
    Kalboussi, Rahma
    Abdellaoui, Mehrez
    Douik, Ali
    [J]. 2016 SECOND INTERNATIONAL IMAGE PROCESSING, APPLICATIONS AND SYSTEMS (IPAS), 2016,
  • [6] Stereoscopic video saliency detection based on spatiotemporal correlation and depth confidence optimization
    Zhang, Ping
    Liu, Jingwen
    Wang, Xiaoyang
    Pu, Tian
    Fei, Chun
    Guo, Zhengkui
    [J]. NEUROCOMPUTING, 2020, 377 : 256 - 268
  • [7] Unsupervised Uncertainty Estimation Using Spatiotemporal Cues in Video Saliency Detection
    Alshawi, Tariq
    Long, Zhiling
    AlRegib, Ghassan
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (06) : 2818 - 2827
  • [8] Video Saliency Detection Using Multi-level Spatiotemporal Orientation
    Liu, Zhao
    Wang, Zhenyang
    Song, Xinhui
    Chen, Chun
    [J]. 2015 10TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS AND SIGNAL PROCESSING (ICICS), 2015,
  • [9] VIDEO SALIENCY DETECTION BASED ON SPATIOTEMPORAL FEATURE LEARNING
    Lee, Se-Ho
    Kim, Jin-Hwan
    Choi, Kwang Pyo
    Sim, Jae-Young
    Kim, Chang-Su
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 1120 - 1124
  • [10] SPATIOTEMPORAL UTILIZATION OF DEEP FEATURES FOR VIDEO SALIENCY DETECTION
    Le, Trung-Nghia
    Sugimoto, Akihiro
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2017,