Capillary Condensation of Water in Graphene Nanocapillaries

被引:3
|
作者
Faraji, Fahim [1 ,2 ,3 ]
Neyts, Erik C. [1 ,3 ]
Milosevic, Milorad V. [2 ,3 ,4 ]
Peeters, Francois M. [2 ,3 ,5 ]
机构
[1] Univ Antwerp, Dept Chem, B-2610 Antwerp, Belgium
[2] Univ Antwerp, Dept Phys, B-2020 Antwerp, Belgium
[3] Univ Antwerp, NANOlab Ctr Excellence, B-2020 Antwerp, Belgium
[4] Univ Fed Mato Grosso, Inst Fis, BR-78060900 Cuiaba, MT, Brazil
[5] Univ Fed Ceara, Dept Fis, BR-60455760 Fortaleza, Ceara, Brazil
关键词
Capillary condensation; Kelvin equation; Workof adhesion; Kapitza conductance; Molecular dynamics; KAPITZA RESISTANCE; TRANSPORT; PRESSURE; SURFACES;
D O I
10.1021/acs.nanolett.4c01088
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recent experiments have revealed that the macroscopic Kelvin equation remains surprisingly accurate even for nanoscale capillaries. This phenomenon was so far explained by the oscillatory behavior of the solid-liquid interfacial free energy. We here demonstrate thermodynamic and capillarity inconsistencies with this explanation. After revising the Kelvin equation, we ascribe its validity at nanoscale confinement to the effect of disjoining pressure. To substantiate our hypothesis, we employed molecular dynamics simulations to evaluate interfacial heat transfer and wetting properties. Our assessments unveil a breakdown in a previously established proportionality between the work of adhesion and the Kapitza conductance at capillary heights below 1.3 nm, where the dominance of the work of adhesion shifts primarily from energy to entropy. Alternatively, the peak density of the initial water layer can effectively probe the work of adhesion. Unlike under bulk conditions, high confinement renders the work of adhesion entropically unfavorable.
引用
收藏
页码:5625 / 5630
页数:6
相关论文
共 50 条
  • [1] A Deep Neural Network Potential for Water Confined in Graphene Nanocapillaries
    Zhao, Wen
    Qiu, Hu
    Guo, Wanlin
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (25): : 10546 - 10553
  • [2] CAPILLARY CONDENSATION OF WATER IN PROTEINS
    DAS, B
    CURRENT SCIENCE, 1971, 40 (24): : 660 - &
  • [3] Square ice in graphene nanocapillaries
    G. Algara-Siller
    O. Lehtinen
    F. C. Wang
    R. R. Nair
    U. Kaiser
    H. A. Wu
    A. K. Geim
    I. V. Grigorieva
    Nature, 2015, 519 : 443 - 445
  • [4] Assembly of peptides in mica-graphene nanocapillaries controlled by confined water
    Zhang, Jinjin
    Zhou, Limin
    Du, Qiqige
    Shen, Zhiwei
    Hu, Jun
    Zhang, Yi
    NANOSCALE, 2019, 11 (17) : 8210 - 8218
  • [5] Compression Limit of Two-Dimensional Water Constrained in Graphene Nanocapillaries
    Zhu, YinBo
    Wang, FengChao
    Bai, Jaeil
    Zeng, Xiao Cheng
    Wu, HengAn
    ACS NANO, 2015, 9 (12) : 12197 - 12204
  • [6] Square ice in graphene nanocapillaries
    Algara-Siller, G.
    Lehtinen, O.
    Wang, F. C.
    Nair, R. R.
    Kaiser, U.
    Wu, H. A.
    Geim, A. K.
    Grigorieva, I. V.
    NATURE, 2015, 519 (7544) : 443 - +
  • [7] THE KELVIN EQUATION AND THE CAPILLARY CONDENSATION OF WATER
    FISHER, LR
    GAMBLE, RA
    MIDDLEHURST, J
    NATURE, 1981, 290 (5807) : 575 - 576
  • [8] Capillary Condensation of Water in Mesoporous Carbon
    Morishige, Kunimitsu
    Kawai, Takumi
    Kittaka, Shigeharu
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (09): : 4664 - 4669
  • [9] Superheating of monolayer ice in graphene nanocapillaries
    Zhu, YinBo
    Wang, FengChao
    Wu, HengAn
    JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (13):
  • [10] Influence of capillary condensation of water in nanoscale friction
    Zamora, RRM
    Sanchez, CM
    Freire, FL
    Prioli, R
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2004, 201 (05): : 850 - 856