Capillary Condensation of Water in Graphene Nanocapillaries

被引:3
|
作者
Faraji, Fahim [1 ,2 ,3 ]
Neyts, Erik C. [1 ,3 ]
Milosevic, Milorad V. [2 ,3 ,4 ]
Peeters, Francois M. [2 ,3 ,5 ]
机构
[1] Univ Antwerp, Dept Chem, B-2610 Antwerp, Belgium
[2] Univ Antwerp, Dept Phys, B-2020 Antwerp, Belgium
[3] Univ Antwerp, NANOlab Ctr Excellence, B-2020 Antwerp, Belgium
[4] Univ Fed Mato Grosso, Inst Fis, BR-78060900 Cuiaba, MT, Brazil
[5] Univ Fed Ceara, Dept Fis, BR-60455760 Fortaleza, Ceara, Brazil
关键词
Capillary condensation; Kelvin equation; Workof adhesion; Kapitza conductance; Molecular dynamics; KAPITZA RESISTANCE; TRANSPORT; PRESSURE; SURFACES;
D O I
10.1021/acs.nanolett.4c01088
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recent experiments have revealed that the macroscopic Kelvin equation remains surprisingly accurate even for nanoscale capillaries. This phenomenon was so far explained by the oscillatory behavior of the solid-liquid interfacial free energy. We here demonstrate thermodynamic and capillarity inconsistencies with this explanation. After revising the Kelvin equation, we ascribe its validity at nanoscale confinement to the effect of disjoining pressure. To substantiate our hypothesis, we employed molecular dynamics simulations to evaluate interfacial heat transfer and wetting properties. Our assessments unveil a breakdown in a previously established proportionality between the work of adhesion and the Kapitza conductance at capillary heights below 1.3 nm, where the dominance of the work of adhesion shifts primarily from energy to entropy. Alternatively, the peak density of the initial water layer can effectively probe the work of adhesion. Unlike under bulk conditions, high confinement renders the work of adhesion entropically unfavorable.
引用
收藏
页码:5625 / 5630
页数:6
相关论文
共 50 条
  • [31] Surface forces in bicontinuous microemulsions: Water capillary condensation and lamellae formation
    Petrov, P
    Olsson, U
    Wennerstrom, H
    LANGMUIR, 1997, 13 (13) : 3331 - 3337
  • [32] Capillary condensation of water in the mesopores of nitrogen-enriched carbon aerogels
    Matsuoka, T
    Hatori, H
    Kodama, M
    Yamashita, J
    Miyajima, N
    CARBON, 2004, 42 (11) : 2346 - 2349
  • [33] CAPILLARY CONDENSATION OF WATER VAPORS ON POROUS BODIES CONTAINING SOLUBLE COMPONENTS
    KAZANSKIJ, VM
    UKRAINSKII KHIMICHESKII ZHURNAL, 1977, 43 (07): : 703 - 706
  • [34] THEORY OF CAPILLARY CONDENSATION
    CHALUPA, J
    HUBERMAN, BA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (03): : 294 - 294
  • [35] Adsorption and capillary condensation
    Kubelka, P
    ZEITSCHRIFT FUR ELEKTROCHEMIE UND ANGEWANDTE PHYSIKALISCHE CHEMIE, 1931, 37 : 637 - 642
  • [36] CAPILLARY CONDENSATION REFRIGERATOR
    GUYER, RA
    PHYSICAL REVIEW B, 1993, 47 (17): : 11591 - 11594
  • [37] Adsorption and capillary condensation
    Lindau, G
    KOLLOID-ZEITSCHRIFT, 1932, 60 (03): : 253 - 263
  • [38] THEORY OF CAPILLARY CONDENSATION
    CHALUPA, J
    HUBERMAN, BA
    JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (09): : 5276 - 5277
  • [39] Fast water flow through graphene nanocapillaries: A continuum model approach involving the microscopic structure of confined water (vol 113, 083101, 2018)
    Neek-Amal, M.
    Lohrasebi, A.
    Mousaei, M.
    Shayeganfar, F.
    Radha, B.
    Peeters, F. M.
    APPLIED PHYSICS LETTERS, 2018, 113 (11)
  • [40] Variation of Critical Crystallization Pressure for the Formation of Square Ice in Graphene Nanocapillaries
    Zeng, Zhen
    Sun, Kai
    Chen, Rui
    Suo, Mengshan
    Che, Zhizhao
    Wang, Tianyou
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (30): : 14874 - 14882