TWO CLASSES OF C*-POWER-NORMS BASED ON HILBERT C*-MODULES

被引:0
|
作者
Moslehian, Mohammad Sal [1 ]
Abedi, Sajjad [2 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Pure Math, POB 1159, Mashhad 91775, Iran
[2] Ferdowsi Univ Mashhad, Ctr Excellence Anal Algebra Struct CEAAS, Dept Pure Math, POB 1159, Mashhad 91775, Iran
关键词
D O I
10.7146/math.scand.a-143100
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let U be aC*-algebra with themultiplier algebra L(U). In this paper, we expand upon the concepts of "strongly type-2-multi-norm" introduced by Dales and "2-power-norm" introduced by Blasco, adapting them to the context of a left Hilbert U-module E. We refer to these adapted notions as P0(E) and P2(E), respectively. Our objective is to establish key properties of these extended concepts. We establish that a sequence of norms (U center dot U k : k. N) belongs to P0(E) if and only if, for every operator T in the matrix space Mnxm(L(U)), the norm of T as a mapping from U2 m(U) to U2 n(U) equals the norm of the corresponding mapping from (E m, U center dot U m) to (E n, U center dot Un). This characterization is a novel contribution that enriches the broader theory of power-norms. In addition, we prove the inclusion P0(E). P2(E). Furthermore, we demonstrate that for the case of U itself, we have P0(U) = P2(U) = {(U center dot U U 2k (U) : k. N)}. This extension of Ramsden's result shows that the only type-2-multi-norm based on C is (U center dot U U 2k : k. N). To provide concrete insights into our findings, we present several examples in the paper.
引用
收藏
页码:364 / 382
页数:19
相关论文
共 50 条
  • [31] Geometrical aspects of Hilbert C*-modules
    Frank, M
    POSITIVITY, 1999, 3 (03) : 215 - 243
  • [32] Invertibility of Multipliers in Hilbert C*-modules
    Rashidi-Kouchi, M.
    Rahimi, A.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2020, 10 (01): : 21 - 37
  • [33] A characterization of Hilbert C*-modules as Banach modules with involution
    Asadi, M. B.
    Frank, M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (02) : 722 - 725
  • [34] NUMERICAL RADIUS IN HILBERT C*-MODULES
    Zamani, Ali
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (04): : 1017 - 1030
  • [35] MORITA EQUIVALENCE OF HILBERT C*- MODULES
    Amini, Massoud
    Asadi, Mohammad B.
    Joita, Maria
    Rezavand, Reza
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (01): : 102 - 110
  • [36] On equivariant embedding of Hilbert C* modules
    Debashish Goswami
    Proceedings - Mathematical Sciences, 2009, 119 : 63 - 70
  • [37] Hilbert C*-modules over Σ*-aIgebras
    Bearden, Clifford A.
    STUDIA MATHEMATICA, 2016, 235 (03) : 269 - 304
  • [38] Pair frames in Hilbert C*-modules
    Azandaryani, M. Mirzaee
    Fereydooni, A.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (02):
  • [39] On extendability of functionals on Hilbert C*-modules
    Manuilov, Vladimir
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (03) : 998 - 1005
  • [40] Crossed products of Hilbert C*-modules
    Bui, HH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (05) : 1341 - 1348