TWO CLASSES OF C*-POWER-NORMS BASED ON HILBERT C*-MODULES

被引:0
|
作者
Moslehian, Mohammad Sal [1 ]
Abedi, Sajjad [2 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Pure Math, POB 1159, Mashhad 91775, Iran
[2] Ferdowsi Univ Mashhad, Ctr Excellence Anal Algebra Struct CEAAS, Dept Pure Math, POB 1159, Mashhad 91775, Iran
关键词
D O I
10.7146/math.scand.a-143100
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let U be aC*-algebra with themultiplier algebra L(U). In this paper, we expand upon the concepts of "strongly type-2-multi-norm" introduced by Dales and "2-power-norm" introduced by Blasco, adapting them to the context of a left Hilbert U-module E. We refer to these adapted notions as P0(E) and P2(E), respectively. Our objective is to establish key properties of these extended concepts. We establish that a sequence of norms (U center dot U k : k. N) belongs to P0(E) if and only if, for every operator T in the matrix space Mnxm(L(U)), the norm of T as a mapping from U2 m(U) to U2 n(U) equals the norm of the corresponding mapping from (E m, U center dot U m) to (E n, U center dot Un). This characterization is a novel contribution that enriches the broader theory of power-norms. In addition, we prove the inclusion P0(E). P2(E). Furthermore, we demonstrate that for the case of U itself, we have P0(U) = P2(U) = {(U center dot U U 2k (U) : k. N)}. This extension of Ramsden's result shows that the only type-2-multi-norm based on C is (U center dot U U 2k : k. N). To provide concrete insights into our findings, we present several examples in the paper.
引用
收藏
页码:364 / 382
页数:19
相关论文
共 50 条
  • [1] Power-norms based on Hilbert C*-modules
    Abedi, Sajjad
    Moslehian, Mohammad Sal
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (01)
  • [2] Schatten classes for Hilbert modules over commutative C*-algebras
    Stern, Abel B.
    van Suijlekom, Walter D.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (04)
  • [3] CONTROLLED MULTIPLIERS WITH TWO OPERATORS IN HILBERT C*-MODULES
    Rashidi-Kouchi, M.
    Rahimi, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (03): : 872 - 883
  • [4] Two Equal Range Operators on Hilbert C*-modules
    Janfada, Ali Reza
    Farokhi-Ostad, Javad
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2021, 18 (02): : 85 - 96
  • [5] Hilbert C*-Modules with Hilbert Dual and C*-Fredholm Operators
    Manuilov, Vladimir
    Troitsky, Evgenij
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2023, 95 (03)
  • [6] Graded Hilbert C*-modules
    Wang, Chunxiang
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (02)
  • [7] Quaternion Hilbert C*-modules
    Omran, Saleh
    Ahmedi, A. El-Sayed
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2012, 14 (05) : 810 - 818
  • [8] Frames in Hilbert C*-modules and C*-algebras
    Frank, M
    Larson, DR
    JOURNAL OF OPERATOR THEORY, 2002, 48 (02) : 273 - 314
  • [9] Isometries of hilbert C*-modules
    Solel, B
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (11) : 4637 - 4660
  • [10] Extensions of Hilbert C*-modules
    Bakic, D
    Guljas, B
    HOUSTON JOURNAL OF MATHEMATICS, 2004, 30 (02): : 537 - 558