Analysis of Langevin Monte Carlo from Poincaré to Log-Sobolev

被引:0
|
作者
Chewi, Sinho [1 ]
Erdogdu, Murat A. [2 ,3 ]
Li, Mufan [3 ]
Shen, Ruoqi [4 ]
Zhang, Matthew S. [2 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ USA
[2] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[3] Univ Toronto, Dept Stat Sci, Toronto, ON, Canada
[4] Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA USA
基金
加拿大自然科学与工程研究理事会;
关键词
Langevin Monte Carlo; Lata & lstrok; a-Oleszkiewicz inequality; Modified log-Sobolev inequality; Poincar & eacute; inequality; R & eacute; nyi divergence; FUNCTIONAL INEQUALITIES; CONVERGENCE; ALGORITHM; EQUILIBRIUM; BOUNDS;
D O I
10.1007/s10208-024-09667-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Classically, the continuous-time Langevin diffusion converges exponentially fast to its stationary distribution pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} under the sole assumption that pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} satisfies a Poincar & eacute; inequality. Using this fact to provide guarantees for the discrete-time Langevin Monte Carlo (LMC) algorithm, however, is considerably more challenging due to the need for working with chi-squared or R & eacute;nyi divergences, and prior works have largely focused on strongly log-concave targets. In this work, we provide the first convergence guarantees for LMC assuming that pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} satisfies either a Lata & lstrok;a-Oleszkiewicz or modified log-Sobolev inequality, which interpolates between the Poincar & eacute; and log-Sobolev settings. Unlike prior works, our results allow for weak smoothness and do not require convexity or dissipativity conditions.
引用
收藏
页数:51
相关论文
共 50 条
  • [41] Spectral gap and log-Sobolev constant for balanced matroids
    Jerrum, M
    Son, JB
    FOCS 2002: 43RD ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2002, : 721 - 729
  • [42] MOMENT ESTIMATES IMPLIED BY MODIFIED LOG-SOBOLEV INEQUALITIES
    Adamczak, Radoslaw
    Bednorz, Witold
    Wolff, Pawel
    ESAIM-PROBABILITY AND STATISTICS, 2018, 21 : 467 - 494
  • [43] The log-Sobolev inequality for weakly coupled lattice fields
    Nobuo Yoshida
    Probability Theory and Related Fields, 1999, 115 : 1 - 40
  • [44] From super Poincare to weighted log-Sobolev and entropy-cost inequalities
    Wang, Feng-Yu
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (03): : 270 - 285
  • [45] PRESERVATION OF LOG-SOBOLEV INEQUALITIES UNDER SOME HAMILTONIAN FLOWS
    Xia, Bo
    PACIFIC JOURNAL OF MATHEMATICS, 2020, 305 (01) : 339 - 352
  • [46] Improved log-Sobolev inequalities, hypercontractivity and uncertainty principle on the hypercube
    Polyanskiy, Yury
    Samorodnitsky, Alex
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (11)
  • [47] Modified log-Sobolev inequalities and two-level concentration
    Sambale, Holger
    Sinulis, Arthur
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2021, 18 (01): : 855 - 885
  • [48] The Deficit in the Gaussian Log-Sobolev Inequality and Inverse Santalo Inequalities
    Gozlan, Nathael
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (17) : 13396 - 13446
  • [49] A characterization of a class of convex log-Sobolev inequalities on the real line
    Shu, Yan
    Strzelecki, Michal
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (04): : 2075 - 2091
  • [50] A log-Sobolev type inequality for free entropy of two projections
    Hiai, Fumio
    Ueda, Yoshimichi
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (01): : 239 - 249