Analysis of Langevin Monte Carlo from Poincaré to Log-Sobolev

被引:0
|
作者
Chewi, Sinho [1 ]
Erdogdu, Murat A. [2 ,3 ]
Li, Mufan [3 ]
Shen, Ruoqi [4 ]
Zhang, Matthew S. [2 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ USA
[2] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[3] Univ Toronto, Dept Stat Sci, Toronto, ON, Canada
[4] Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA USA
基金
加拿大自然科学与工程研究理事会;
关键词
Langevin Monte Carlo; Lata & lstrok; a-Oleszkiewicz inequality; Modified log-Sobolev inequality; Poincar & eacute; inequality; R & eacute; nyi divergence; FUNCTIONAL INEQUALITIES; CONVERGENCE; ALGORITHM; EQUILIBRIUM; BOUNDS;
D O I
10.1007/s10208-024-09667-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Classically, the continuous-time Langevin diffusion converges exponentially fast to its stationary distribution pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} under the sole assumption that pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} satisfies a Poincar & eacute; inequality. Using this fact to provide guarantees for the discrete-time Langevin Monte Carlo (LMC) algorithm, however, is considerably more challenging due to the need for working with chi-squared or R & eacute;nyi divergences, and prior works have largely focused on strongly log-concave targets. In this work, we provide the first convergence guarantees for LMC assuming that pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} satisfies either a Lata & lstrok;a-Oleszkiewicz or modified log-Sobolev inequality, which interpolates between the Poincar & eacute; and log-Sobolev settings. Unlike prior works, our results allow for weak smoothness and do not require convexity or dissipativity conditions.
引用
收藏
页数:51
相关论文
共 50 条