Gully erosion mapping susceptibility in a Mediterranean environment: A hybrid decision-making model

被引:7
|
作者
Hitouri, Sliman [1 ]
Meriame, Mohajane [2 ]
Ajim, Ali Sk [3 ]
Pacheco, Quevedo Renata [4 ]
Nguyen-Huy, Thong [5 ]
Bao, Pham Quoc [6 ]
ElKhrachy, Ismail [7 ]
Varasano, Antonietta [8 ]
机构
[1] Univ Ibn Tofail, Dept Geol, Geosci Lab, Fac Sci, Kenitra 14000, Morocco
[2] Natl Res Council Italy, Construct Technol Inst, Polo Tecnol San Giovanni Teduccio, I-80146 Naples, Italy
[3] Aligarh Muslim Univ AMU, Dept Geog, Fac Sci, Aligarh 202002, UP, India
[4] Natl Inst Space Res INPE, Earth Observat & Geoinformat Div, BR-12227010 Sao Jose Dos Campos, SP, Brazil
[5] Univ Southern Queensland, Ctr Appl Climate Sci, Toowoomba, Qld 4350, Australia
[6] Univ Silesia Katowice, Inst Earth Sci, Fac Nat Sci, Bedzinska St 60, PL-41200 Sosnowiec, Poland
[7] Najran Univ, Civil Engn Dept, Coll Engn, Najran 66291, Saudi Arabia
[8] CNR, Construct Technol Inst, ITC CNR, I-70124 Bari, Italy
关键词
WEIGHTS-OF-EVIDENCE; LOGISTIC-REGRESSION; RIVER-BASIN; SEMIARID REGION; NEURAL-NETWORKS; GIS; ENSEMBLE; CLASSIFICATION; PREDICTION; CLASSIFIERS;
D O I
10.1016/j.iswcr.2023.09.008
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Gully erosion is one of the main natural hazards, especially in arid and semi-arid regions, destroying ecosystem service and human well-being. Thus, gully erosion susceptibility maps (GESM) are urgently needed for identifying priority areas on which appropriate measurements should be considered. Here, we proposed four new hybrid Machine learning models, namely weight of evidence -Multilayer Perceptron (MLP- WoE), weight of evidence -K Nearest neighbours (KNN- WoE), weight of evidenceLogistic regression (LR- WoE), and weight of evidenceRandom Forest (RF- WoE), for mapping gully erosion exploring the opportunities of GIS tools and Remote sensing techniques in the El Ouaar watershed located in the Souss plain in Morocco. Inputs of the developed models are composed of the dependent (i.e., gully erosion points) and a set of independent variables. In this study, a total of 314 gully erosion points were randomly split into 70% for the training stage (220 gullies) and 30% for the validation stage (94 gullies) sets were identi fied in the study area. 12 conditioning variables including elevation, slope, plane curvature, rainfall, distance to road, distance to stream, distance to fault, TWI, lithology, NDVI, and LU/LC were used based on their importance for gully erosion susceptibility mapping. We evaluate the performance of the above models based on the following statistical metrics: Accuracy, precision, and Area under curve (AUC) values of receiver operating characteristics (ROC). The results indicate the RF- WoE model showed good accuracy with (AUC 1 / 4 0.8), followed by KNN-WoE (AUC 1 / 4 0.796), then MLP-WoE (AUC 1 / 4 0.729) and LR-WoE (AUC 1 / 4 0.655), respectively. Gully erosion susceptibility maps provide information and valuable tool for decision-makers and planners to identify areas where urgent and appropriate interventions should be applied. (c) 2023 International Research and Training Center on Erosion and Sedimentation, China Water and Power Press, and China Institute of Water Resources and Hydropower Research. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BYNC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:279 / 297
页数:19
相关论文
共 50 条
  • [31] Spatial mapping of gully erosion susceptibility using an efficient metaheuristic neural network
    Mehrabi, Mohammad
    Nalivan, Omid Asadi
    Scaioni, Marco
    Karvarinasab, Mahdiyeh
    Kornejady, Aiding
    Moayedi, Hossein
    ENVIRONMENTAL EARTH SCIENCES, 2023, 82 (20)
  • [32] A wrapper feature selection approach for efficient modelling of gully erosion susceptibility mapping
    Rouhani, Hamed
    Fathabadi, Aboalhasan
    Baartman, Jantiene
    PROGRESS IN PHYSICAL GEOGRAPHY-EARTH AND ENVIRONMENT, 2021, 45 (04): : 580 - 599
  • [33] Spatial mapping of gully erosion susceptibility using an efficient metaheuristic neural network
    Mohammad Mehrabi
    Omid Asadi Nalivan
    Marco Scaioni
    Mahdiyeh Karvarinasab
    Aiding Kornejady
    Hossein Moayedi
    Environmental Earth Sciences, 2023, 82
  • [34] Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion
    Rahmati, Omid
    Tahmasebipour, Nasser
    Haghizadeh, Ali
    Pourghasemi, Hamid Reza
    Feizizadeh, Bakhtiar
    GEOMORPHOLOGY, 2017, 298 : 118 - 137
  • [35] DECISION-MAKING MODEL
    ARCHER, ER
    INDUSTRIAL ENGINEERING, 1975, 7 (04): : 27 - 29
  • [36] AN ALGEBRA OF THE INFORMATION MODEL OF THE OBJECT ENVIRONMENT IN DECISION-MAKING SYSTEMS
    DESHKO, AI
    IGNATENKO, BV
    KOSTYUK, VI
    CYBERNETICS, 1983, 19 (05): : 655 - 663
  • [37] Ensemble hybrid machine learning methods for gully erosion susceptibility mapping: K-fold cross validation approach
    Roy, Jagabandhu
    Saha, Sunil
    ARTIFICIAL INTELLIGENCE IN GEOSCIENCES, 2022, 3 : 28 - 45
  • [38] Testing the ephemeral gully erosion model (EGEM) for two Mediterranean environments
    Nachtergaele, J
    Poesen, J
    Vandekerckhove, L
    Wijdenes, DO
    Roxo, M
    EARTH SURFACE PROCESSES AND LANDFORMS, 2001, 26 (01) : 17 - 30
  • [39] Hybrid Model for Decision-Making Methods in Wireless Sensor Networks
    Torres-Lozano, Martha
    Gonzalez, Virgilio
    SERVICE ORIENTED, HOLONIC AND MULTI-AGENT MANUFACTURING SYSTEMS FOR INDUSTRY OF THE FUTURE, SOHOMA LATIN AMERICA 2021, 2021, 987 : 319 - 330
  • [40] A HYBRID MODEL FOR DECISION-MAKING IN THE INFORMATION AND COMMUNICATIONS TECHNOLOGY SECTOR
    Cid-Lopez, Andres
    Hornos, Miguel J.
    Alberto Carrasco, Ramon
    Herrera-Viedma, Enrique
    TECHNOLOGICAL AND ECONOMIC DEVELOPMENT OF ECONOMY, 2015, 21 (05) : 720 - 737