Meta-Adapters: Parameter Efficient Few-shot Fine-tuning through Meta-Learning

被引:0
|
作者
Bansal, Trapit [1 ]
Alzubi, Salaheddin [1 ]
Wang, Tong [2 ]
Lee, Jay-Yoon [1 ]
McCallum, Andrew [1 ]
机构
[1] Univ Massachusetts, Amherst, MA 01003 USA
[2] Microsoft Res, Montreal, PQ, Canada
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Consistent improvements in the representational capacity of large pre-trained transformers has made it increasingly viable to serve these models as shared priors that can be fine-tuned on a large number of downstream tasks. However, fine-tuning the entire model for every task of interest makes a copy of all the model parameters, rendering such scenarios highly impractical. Recently introduced Adapter methods propose a promising alternative, one where only a small number of additional parameters are introduced per task specifically for fine-tuning. However, Adapters often require large amounts of task-specific data for good performance and don't work well in data-scarce few-shot scenarios. In this paper, we approach parameter-efficient fine-tuning in few-shot settings from a meta-learning perspective. We introduce Meta-Adapters, which are small blocks of meta-learned adapter layers inserted in a pre-trained model that re-purpose a frozen pre-trained model into a parameter-efficient few-shot learner. Meta-Adapters perform competitively with state-of-the-art few-shot learning methods that require full fine-tuning, while only fine-tuning 0.6% of the parameters. We evaluate Meta-Adapters along with multiple transfer learning baselines on an evaluation suite of 17 classification tasks and find that they improve few-shot accuracy by a large margin over competitive parameter-efficient methods, while requiring significantly lesser parameters for fine-tuning. Moreover, when comparing few-shot prompting of GPT-3 against few-shot fine-tuning with Meta-Adapters, we find that Meta-Adapters perform competitively while working with pre-trained transformers that are many orders of magnitude (1590x) smaller in size than GPT-3.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Stress Testing of Meta-learning Approaches for Few-shot Learning
    Aimen, Aroof
    Sidheekh, Sahil
    Madan, Vineet
    Krishnan, Narayanan C.
    AAAI WORKSHOP ON META-LEARNING AND METADL CHALLENGE, VOL 140, 2021, 140 : 38 - 44
  • [32] MetaDiff: Meta-Learning with Conditional Diffusion for Few-Shot Learning
    Zhang, Baoquan
    Luo, Chuyao
    Yu, Demin
    Li, Xutao
    Lin, Huiwei
    Ye, Yunming
    Zhang, Bowen
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 15, 2024, : 16687 - 16695
  • [33] Fast Few-Shot Classification by Few-Iteration Meta-Learning
    Tripathi, Ardhendu Shekhar
    Danelljan, Martin
    Van Gool, Luc
    Timofte, Radu
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 9522 - 9528
  • [34] Learning Power Systems Waveform Incipient Patterns Through Few-Shot Meta-Learning
    Shi, Lixian
    Cui, Qiushi
    Weng, Yang
    Zhang, Yigong
    Chen, Shilong
    Li, Jian
    Li, Wenyuan
    IEEE OPEN ACCESS JOURNAL OF POWER AND ENERGY, 2024, 11 : 532 - 545
  • [35] Meta-learning based on parameter transfer for few-shot classification of remote sensing scenes
    Ma, Chenhui
    Mu, Xiaodong
    Zhao, Peng
    Yan, Xin
    REMOTE SENSING LETTERS, 2021, 12 (06) : 531 - 541
  • [36] Meta-GNN: On Few-shot Node Classification in Graph Meta-learning
    Zhou, Fan
    Cao, Chengtai
    Zhang, Kunpeng
    Trajcevski, Goce
    Zhong, Ting
    Geng, Ji
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 2357 - 2360
  • [37] Meta-SE: A Meta-Learning Framework for Few-Shot Speech Enhancement
    Zhou, Weili
    Lu, Mingliang
    Ji, Ruijie
    IEEE ACCESS, 2021, 9 : 46068 - 46078
  • [38] How Fine-Tuning Allows for Effective Meta-Learning
    Chua, Kurtland
    Lei, Qi
    Lee, Jason D.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [39] PERSONALIZED FACE AUTHENTICATION BASED ON FEW-SHOT META-LEARNING
    Shin, Chaehun
    Lee, Jangho
    Na, Byunggook
    Yoon, Sungroh
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3897 - 3901
  • [40] MetaMedSeg: Volumetric Meta-learning for Few-Shot Organ Segmentation
    Farshad, Azade
    Makarevich, Anastasia
    Belagiannis, Vasileios
    Navab, Nassir
    DOMAIN ADAPTATION AND REPRESENTATION TRANSFER (DART 2022), 2022, 13542 : 45 - 55