Graph-Time Convolutional Autoencoders

被引:0
|
作者
Sabbaqi, Mohammad [1 ]
Taormina, Riccardo [1 ]
Hanjalic, Alan [1 ]
Isufi, Elvin [1 ]
机构
[1] Delft Univ Technol, Delft, Netherlands
来源
关键词
NEURAL-NETWORKS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce graph-time convolutional autoencoder (GTConvAE), a novel spatiotemporal architecture tailored to unsupervised learning for multivariate time series on networks. The GTConvAE leverages product graphs to represent the time series and a principled joint spatiotemporal convolution over this product graph. Instead of fixing the product graph at the outset, we make it parametric to attend to the spatiotemporal coupling for the task at hand. On top of this, we propose temporal downsampling for the encoder to improve the spatiotemporal receptive field without affecting the network structure; respectively, in the decoder, we consider the opposite upsampling operator. We prove that the GTConvAEs with graph integral Lipschitz filters are stable to relative network perturbations, ultimately showing the role of the different components in the encoder and decoder. Numerical experiments for denoising and anomaly detection in solar and water networks corroborate our findings and showcase the effectiveness of the GTConvAE compared with state-of-the-art alternatives.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Heterogeneous Graph Masked Autoencoders
    Tian, Yijun
    Dong, Kaiwen
    Zhang, Chunhui
    Zhang, Chuxu
    Chawla, Nitesh V.
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 8, 2023, : 9997 - 10005
  • [22] On Convolutional Autoencoders to Speed Up Similarity-Based Time Series Mining
    Aragao da Silva, Yuri Gabriel
    Silva, Diego Furtado
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 4769 - 4778
  • [23] Convolutional Variational Autoencoders for Image Clustering
    Nellas, Ioannis A.
    Tasoulis, Sotiris K.
    Plagianakos, Vassilis P.
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 695 - 702
  • [24] Convolutional Sparse Autoencoders for Image Classification
    Luo, Wei
    Li, Jun
    Yang, Jian
    Xu, Wei
    Zhang, Jian
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (07) : 3289 - 3294
  • [25] Dimensionality Reduction Using Convolutional Autoencoders
    Mittal, Shweta
    Sangwan, Om Prakash
    ADVANCES IN INFORMATION COMMUNICATION TECHNOLOGY AND COMPUTING, AICTC 2021, 2022, 392 : 507 - 516
  • [26] Landslide Monitoring using Convolutional Autoencoders
    Barbu, Marina
    Radoi, Anamaria
    Suciu, George
    PROCEEDINGS OF THE 2020 12TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTERS AND ARTIFICIAL INTELLIGENCE (ECAI-2020), 2020,
  • [27] Convolutional Autoencoders for Human Motion Infilling
    Kaufmann, Manuel
    Aksan, Emre
    Song, Jie
    Pece, Fabrizio
    Ziegler, Remo
    Hilliges, Otmar
    2020 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2020), 2020, : 918 - 927
  • [28] Time-series Imputation using Graph Neural Networks and Denoising Autoencoders
    Wieser, Raymond
    Fan, Yangxin
    Yu, Xuanji
    Braid, Jennifer
    Shaton, Avishai
    Hoffman, Adam
    Spurgeon, Ben
    Gibbons, Daniel
    Bruckman, Laura S.
    Wu, Yinghui
    French, Roger H.
    2023 IEEE 50TH PHOTOVOLTAIC SPECIALISTS CONFERENCE, PVSC, 2023,
  • [29] Dynamic Joint Variational Graph Autoencoders
    Mahdavi, Sedigheh
    Khoshraftar, Shima
    An, Aijun
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT I, 2020, 1167 : 385 - 401
  • [30] Deep convolutional autoencoders for the time-space reconstruction of liquid rocket engine flames
    Usandivaras, Jose F. Zapata
    Bauerheim, Michael
    Cuenot, Benedicte
    Urbano, Annafederica
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2024, 40 (1-4)