Landslide Monitoring using Convolutional Autoencoders

被引:8
|
作者
Barbu, Marina [1 ,2 ]
Radoi, Anamaria [2 ]
Suciu, George [1 ]
机构
[1] BEIA Consult Int, R&D Dept, Bucharest, Romania
[2] Univ Politehn Bucuresti, Res Ctr CAMPUS, Bucharest, Romania
基金
欧盟地平线“2020”;
关键词
Autoencoders; Convolutional Neural Networks; Landslides; K-Means;
D O I
10.1109/ecai50035.2020.9223121
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Landslides are one of the major emergency situations that lead to huge damage and human victims. A monitoring system to reduce the effects of landslides is mandatory under these circumstances. In this paper, we propose an automatic landslide detection algorithm based on the use of multispectral remote sensing data. The compressed representation of the spatial and spectral data is obtained using the encoder part of a Convolutional Autoencoder architecture, whereas the separation of the landslide area is achieved through a K-Means unsupervised clustering algorithm. The data used for experiments was collected for areas in Romania severely affected by landslides, for a period of approximately 2-3 months before and after the event. Satellite images can be acquired from the Earth Explorer platform and Google Earth Engine.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Dimensionality Reduction Using Convolutional Autoencoders
    Mittal, Shweta
    Sangwan, Om Prakash
    ADVANCES IN INFORMATION COMMUNICATION TECHNOLOGY AND COMPUTING, AICTC 2021, 2022, 392 : 507 - 516
  • [2] Determination of Lycopersicon maturity using convolutional autoencoders
    Kao, I-Hsi
    Hsu, Ya-Wen
    Yang, Ya-Zhu
    Chen, Ya-Li
    Lai, Yi-Horng
    Perng, Jau-Woei
    SCIENTIA HORTICULTURAE, 2019, 256
  • [3] Reducing dimensionality of spectrograms using convolutional autoencoders
    Jenkins, William F.
    Gerstoft, Peter
    Chien, Chih-Chieh
    Ozanich, Emma
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2023, 153 (03):
  • [4] Anomaly Detection for HTTP Using Convolutional Autoencoders
    Park, Seungyoung
    Kim, Myungjin
    Lee, Seokwoo
    IEEE ACCESS, 2018, 6 : 70884 - 70901
  • [5] Multiresolution convolutional autoencoders
    Liu, Yuying
    Ponce, Colin
    Brunton, Steven L.
    Kutz, J. Nathan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 474
  • [6] DeepPainter: Painter Classification Using Deep Convolutional Autoencoders
    David, Omid E.
    Netanyahu, Nathan S.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2016, PT II, 2016, 9887 : 20 - 28
  • [7] Medical image denoising using convolutional denoising autoencoders
    Gondara, Lovedeep
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2016, : 241 - 246
  • [8] On Securing Sensitive Data Using Deep Convolutional Autoencoders
    Sy, Abib
    Jaafar, Fehmi
    Bouchard, Kevin
    2024 10TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES, CODIT 2024, 2024, : 1577 - 1583
  • [9] Compression of EMG Signals Using Deep Convolutional Autoencoders
    Dinashi, Kimia
    Ameri, Ali
    Akhaee, Mohammad Ali
    Englehart, Kevin
    Scheme, Erik
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (07) : 2888 - 2897
  • [10] Physiological Waveform Imputation of Missing Data using Convolutional Autoencoders
    Miller, Daniel
    Ward, Andrew
    Bambos, Nicholas
    Scheinker, David
    Shin, Andrew
    2018 IEEE 20TH INTERNATIONAL CONFERENCE ON E-HEALTH NETWORKING, APPLICATIONS AND SERVICES (HEALTHCOM), 2018,