On the convergence of a linearly implicit finite element method for the nonlinear Schrödinger equation

被引:0
|
作者
Asadzadeh, Mohammad [1 ,2 ]
Zouraris, Georgios E. [3 ]
机构
[1] Chalmers Univ Technol, Dept Math, Gothenburg, Sweden
[2] Gothenburg Univ, Gothenburg, Sweden
[3] Univ Crete, Dept Math & Appl Math, Div Appl Math Differential Equat & Numer Anal, Iraklion, Crete, Greece
基金
瑞典研究理事会;
关键词
convergence; finite element method; linearly implicit time stepping; nonlinear Schr & ouml; dinger equation; nonuniform mesh; optimal-order error estimates; stability; SCHRODINGER-EQUATION; ERROR ANALYSIS; DIFFERENCE DISCRETIZATION; GALERKIN APPROXIMATIONS; NUMERICAL-SIMULATION; SYSTEMS; SCHEME; VORTEX;
D O I
10.1111/sapm.12743
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a model initial- and Dirichlet boundary-value problem for a nonlinear Schr & ouml;dinger equation in two and three space dimensions. The solution to the problem is approximated by a conservative numerical method consisting of a standard conforming finite element space discretization and a second-order, linearly implicit time stepping, yielding approximations at the nodes and at the midpoints of a nonuniform partition of the time interval. We investigate the convergence of the method by deriving optimal-order error estimates in the L2$L<^>2$ and the H1$H<^>1$ norm, under certain assumptions on the partition of the time interval and avoiding the enforcement of a courant-friedrichs-lewy (CFL) condition between the space mesh size and the time step sizes.
引用
收藏
页数:34
相关论文
共 50 条
  • [21] Binary Nonlinearization of the Nonlinear Schr?dinger Equation Under an Implicit Symmetry Constraint
    Jing YU
    Jing-song HE
    Yi CHENG
    Acta Mathematicae Applicatae Sinica, 2014, (02) : 379 - 388
  • [22] Binary nonlinearization of the nonlinear Schrödinger equation under an implicit symmetry constraint
    Jing Yu
    Jing-song He
    Yi Cheng
    Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 379 - 388
  • [23] Superconvergence of a new energy dissipation finite element scheme for nonlinear Schrödinger equation with wave operator
    Wang, Junjun
    Shi, Dongyang
    Cao, Lina
    Pei, Jiaxuan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 161 : 202 - 211
  • [24] Finite Temperature Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Yi-Heng Wu
    Qing-Cai Wang
    Yan Wang
    International Journal of Theoretical Physics, 2011, 50 : 2546 - 2551
  • [25] A finite element implementation of the incompressible Schrödinger flow method
    Riva, Stefano
    Introini, Carolina
    Cammi, Antonio
    PHYSICS OF FLUIDS, 2024, 36 (01)
  • [26] Unconditional convergence and optimal error estimates of the Euler semi-implicit scheme for a generalized nonlinear Schrödinger equation
    Wentao Cai
    Jian Li
    Zhangxin Chen
    Advances in Computational Mathematics, 2016, 42 : 1311 - 1330
  • [27] Existence of solutions to the nonlinear Schrödinger equation on locally finite graphs
    Zidong Qiu
    Yang Liu
    Archiv der Mathematik, 2023, 120 : 403 - 416
  • [28] Finite time blowup for the nonlinear Schrödinger equation with a delta potential
    Hauser, Brandon
    Holmes, John
    O'Keefe, Eoghan
    Raynor, Sarah
    Yu, Chuanyang
    INVOLVE, A JOURNAL OF MATHEMATICS, 2023, 16 (04): : 591 - 604
  • [29] Conservative finite difference schemes for the chiral nonlinear Schrödinger equation
    Mohammad S Ismail
    Khalil S Al-Basyouni
    Ayhan Aydin
    Boundary Value Problems, 2015
  • [30] Convergence of an implicit finite element method for the Landau-Lifshitz-Gilbert equation
    Bartels, Soren
    Prohl, Andreas
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (04) : 1405 - 1419