SpatialCells: automated profiling of tumor microenvironments with spatially resolved multiplexed single-cell data

被引:0
|
作者
Wan, Guihong [1 ,2 ]
Maliga, Zoltan [3 ]
Yan, Boshen
Vallius, Tuulia [4 ]
Shi, Yingxiao [5 ]
Khattab, Sara [6 ]
Chang, Crystal
Nirmal, Ajit J. [2 ,7 ]
Yu, Kun-Hsing [8 ]
Liu, David [9 ,10 ,11 ]
Lian, Christine G. [12 ,13 ]
DeSimone, Mia S. [10 ,13 ]
Sorger, Peter K. [14 ]
Semenov, Yevgeniy R. [1 ,2 ]
机构
[1] Massachusetts Gen Hosp, Dermatol, Boston, MA USA
[2] Harvard Med Sch, Boston, MA 02114 USA
[3] Harvard Med Sch, Lab Syst Pharmacol, Tissue Imaging Platform, Boston, MA 02114 USA
[4] Harvard Med Sch, Dept Syst Biol, Lab Syst Pharmacol, Boston, MA 02114 USA
[5] Harvard Univ, Biol & Biomed Sci Program, Cambridg, MA USA
[6] Massachusetts Gen Hosp, Boston, MA USA
[7] Brigham & Womens Hosp, Dept Dermatol, Boston, MA USA
[8] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02114 USA
[9] Dana Farber Canc Inst, Boston, MA USA
[10] Brigham & Womens Hosp, Boston, MA USA
[11] Harvard Med Sch, Med, Boston, MA 02114 USA
[12] Mass Gen Brigham, Boston, MA USA
[13] Harvard Med Sch, Pathol, Boston, MA 02114 USA
[14] Harvard Med Sch, Dept Syst Biol, Syst Pharmacol, Boston, MA 02114 USA
基金
美国国家卫生研究院;
关键词
spatial analysis; region-based profiling; multiplexed single-cell data; spatial omics; tumor immune infiltration; tumor microenvironment; MELANOMA; RECURRENCE; ATLAS;
D O I
10.1093/bib/bbae189
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Cancer is a complex cellular ecosystem where malignant cells coexist and interact with immune, stromal and other cells within the tumor microenvironment (TME). Recent technological advancements in spatially resolved multiplexed imaging at single-cell resolution have led to the generation of large-scale and high-dimensional datasets from biological specimens. This underscores the necessity for automated methodologies that can effectively characterize molecular, cellular and spatial properties of TMEs for various malignancies. This study introduces SpatialCells, an open-source software package designed for region-based exploratory analysis and comprehensive characterization of TMEs using multiplexed single-cell data. The source code and tutorials are available at https://semenovlab.github.io/SpatialCells. SpatialCells efficiently streamlines the automated extraction of features from multiplexed single-cell data and can process samples containing millions of cells. Thus, SpatialCells facilitates subsequent association analyses and machine learning predictions, making it an essential tool in advancing our understanding of tumor growth, invasion and metastasis.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] SCAR: Single-cell and Spatially-resolved Cancer Resources
    Deng, Yushan
    Chen, Peixin
    Xiao, Jiedan
    Li, Mengrou
    Shen, Jiayi
    Qin, Siying
    Jia, Tengfei
    Li, Changxiao
    Chang, Ashley
    Zhang, Wensheng
    Liu, Hebin
    Xue, Ruidong
    Zhang, Ning
    Wang, Xiangdong
    Huang, Li
    Chen, Dongsheng
    NUCLEIC ACIDS RESEARCH, 2024, 52 (D1) : D1407 - D1417
  • [42] Preface for Special Issue: Single-Cell and Spatially Resolved Omics
    Fan, Xiaohui
    JOURNAL OF PHARMACEUTICAL ANALYSIS, 2023, 13 (08) : 831 - 832
  • [43] Preface for Special Issue: Single-Cell and Spatially Resolved Omics
    Fan, Xiaohui
    JOURNAL OF PHARMACEUTICAL ANALYSIS, 2023, 13 (07) : 689 - 690
  • [44] Accurately Deciphering Novel Cell Type in Spatially Resolved Single-Cell Data Through Optimal Transport
    Luo, Mai
    Zeng, Yuansong
    Chen, Jianing
    Shangguan, Ningyuan
    Zhou, Wenhao
    Yang, Yuedong
    BIOINFORMATICS RESEARCH AND APPLICATIONS, PT II, ISBRA 2024, 2024, 14955 : 107 - 118
  • [45] Moving Spatially Resolved Multiplexed Protein Profiling toward Clinical
    Pourmaleki, Maryam
    Socci, Nicholas D.
    Hollmann, Travis J.
    Mellinghoff, Ingo K.
    CANCER DISCOVERY, 2023, 13 (04) : 824 - 828
  • [46] Multichrome encoding-based multiplexed, spatially resolved imaging reveals single-cell RNA epigenetic modifications heterogeneity
    Mao, Dongsheng
    Tang, Xiaochen
    Zhang, Runchi
    Hu, Song
    Gou, Hongquan
    Zhang, Penghui
    Li, Wenxing
    Pan, Qiuhui
    Shen, Bing
    Zhu, Xiaoli
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [47] Subtle cell states resolved in single-cell data
    Caleb Lareau
    Nature Biotechnology, 2023, 41 : 1690 - 1691
  • [48] Subtle cell states resolved in single-cell data
    Lareau, Caleb
    NATURE BIOTECHNOLOGY, 2023, 41 (12) : 1690 - 1691
  • [49] Epigenomic tumor evolution modeling with single-cell methylation data profiling.
    Li, Xuan C.
    Liu, Yuelin
    Rashidi, Farid
    Malikic, Salem
    Mount, Stephen M.
    Ruppin, Eytan
    Aldape, Kenneth
    Sahinalp, Cenk
    CANCER RESEARCH, 2021, 81 (13)
  • [50] Spatially-resolved single-cell HER2 tumor heterogeneity captured by biophysical modeling
    Cook, D.
    Hobbs, N.
    Lopez-Ramos, D.
    Cole, J.
    Patel, S.
    ANNALS OF ONCOLOGY, 2022, 33 : S142 - S142